Có hai chung cư cao tầng I và II xây cạnh nhau với khoảng cách giữa chúng là HK = 20 m. Để đảm bảo an ninh, trên nóc chung cư II người ta lắp camera ở vị trí C. Gọi A, B lần lượt là vị trí thấp nhất, cao nhất trên chung cư I mà camera có thể quan sát được (Hình 18). Hãy tính số đo góc ACB (phạm vi camera có thể quan sát được ở chung cư I). Biết rằng chiều cao của chung cư II là CK = 32 m, AH = 6 m, BH = 24 m (làm tròn kết quả đến hàng phần mười theo đơn vị độ).
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Kẻ AM ⊥ CK, BN ⊥CK (hình vẽ) ta có:
BN = AM = HK = 20 (m);
CN = CK – NK = CK – BH = 32 – 24 = 8 (m);
MN = AB = BH – AH = 24 – 6 = 18 (m);
CM = CN + MN = 8 + 18 = 26 (m).
Đặt \(\widehat {BCN} = \alpha ,\widehat {ACM} = \beta \).
Xét DBCN vuông tại N có: \(\tan \alpha = \frac = \frac{8} = \frac{5}{2}\);
Xét DACM vuông tại M có: \(\tan \beta = \frac = \frac = \frac\);
Ta có: \(\tan \widehat {ACB} = \tan \left( {\widehat {BCN} - \widehat {ACM}} \right) = \tan \left( {\alpha - \beta } \right)\)
\[ \Rightarrow \tan \widehat {ACB} = \frac{{\tan \alpha - \tan \beta }} = \frac{{\frac{5}{2} - \frac}}}} = \frac\].
\( \Rightarrow \widehat {ACB} \approx 31^\circ \).
Vậy góc ACB (phạm vi camera có thể quan sát được ở chung cư I) có số đo xấp xỉ 31°.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |