Chứng minh: Nếu hai mặt phẳng vuông góc với nhau thì mặt phẳng này chứa một đường thẳng vuông góc với mặt phẳng kia.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Cho hai mặt phẳng (P) và (Q) vuông góc với nhau.
Ta cần chứng minh rằng tồn tại một đường thẳng a nằm trong mặt phẳng (P) sao cho đường thẳng a vuông góc với mặt phẳng (Q).
Thật vậy, ta lấy:
⦁ d là giao tuyến của hai mặt phẳng (P) và (Q);
⦁ a là đường thẳng nằm trong mặt phẳng (P) sao cho a ⊥ d;
· O là giao điểm của đường thẳng a và mặt phẳng (Q).
Do hai mặt phẳng (P) và (Q) cùng chứa điểm O nên hai mặt phẳng đó cắt nhau theo giao tuyến d đi qua O.
Trong mặt phẳng (Q), qua O kẻ đường thẳng b vuông góc với d.
Như vậy ta có: d là cạnh của góc nhị diện [P, d, Q];
a ⊂ (P) và a ⊥ d tại O (với O ∈ d);
b ⊂ (Q) và b ⊥ d tại O (với O ∈ d);
Suy ra aOb^ là góc phẳng nhị diện của góc nhị diện [P, d, Q].
Mặt khác (P) ⊥ (Q) nên góc nhị diện [P, d, Q] vuông hay aOb^=90°.
Suy ra a ⊥ b.
Ta có: a ⊥ d, a ⊥ b và d ∩ b = O trong (Q).
Suy ra a ⊥ (Q).
Vậy nếu hai mặt phẳng vuông góc với nhau thì mặt phẳng này chứa một đường thẳng vuông góc với mặt phẳng kia.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |