Cho tam giác T1 có diện tích bằng 1. Giả sử có tam giác T2 đồng dạng với tam giác T1, tam giác T3 đồng dạng với tam giác T2, ..., tam giác Tn đồng dạng với tam giác Tn – 1 với tỉ số đồng dạng \(\frac{1}{k}\,\left( {k > 1} \right)\). Khi n tiến tới vô cùng, tính tổng diện tích của tất cả các tam giác theo k.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Gọi diện tích các tam giác T1; T2; ...; Tn – 1; Tn lần lượt là S1; S2; ...; Sn – 1; Sn.
Vì tam giác Tn đồng dạng với tam giác Tn – 1 với tỉ số đồng dạng \(\frac{1}{k}\,\) nên diện tích tam giác Tn bằng \(\frac{1}{{{k^2}}}\) diện tích tam giác Tn – 1 hay \({S_n} = \frac{1}{{{k^2}}}{S_{n - 1}}\).
Vì k > 1 nên \(\frac{1}{{{k^2}}} < 1\). Vậy S1; S2; ...; Sn – 1; Sn; ... lập thành một cấp số nhân lùi vô hạn có số hạng đầu S1 = 1 và công bội \(q = \frac{1}{{{k^2}}}\).
Khi đó, tổng diện tích của tất cả các tam giác nếu n tiến tới vô cùng là:
S = S1 + S2 + ... + Sn – 1 + Sn + ... = \(\frac{1}}}} = \frac{{{k^2}}}{{{k^2} - 1}}\).
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |