Đường tròn tâm I nội tiếp tam giác ABC tiếp xúc với AB, AC lần lượt tại F và E. Kẻ CK vuông góc với BI. Gọi M, N lần lượt là trung điểm của BC, AC. Chứng minh:
a) F, E, K thẳng hàng;
b) K, N, M thẳng hàng.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) ⦁ Gọi J là trung điểm của IC.
Vì đường tròn (I) tiếp xúc với AC tại E nên IE ⊥ AC tại E. Do đó IEC^=90° nên điểm E thuộc đường tròn tâm J, đường kính IC.
Vì CK ⊥ BI tại K nên BKC^=90° hay IKC^=90° nên điểm K thuộc đường tròn tâm J, đường kính IC.
Do đó bốn điểm I, E, K, C cùng thuộc đường tròn tâm J, đường kính IC.
Như vậy, tứ giác IEKC nội tiếp đường tròn.
Suy ra KEC^=KIC^ (hai góc nội tiếp cùng chắn cung KC). (3)
⦁ Vì đường tròn (I) là đường tròn nội tiếp tam giác ABC nên AI, BI, CI là các đường phân giác của tam giác ABC.
Gọi P là giao điểm của AI và EF.
Do AI là tia phân giác của góc BAC nên PAE^=12BAC^.
Do BI là tia phân giác của góc ABC nên IBC^=12ABC^.
Do CI là tia phân giác của góc ACB nên ICB^=12ACB^.
Vì đường tròn (I) tiếp xúc với AB, AC lần lượt tại F và E hay AE, AF là hai tiếp tuyến của đường tròn (I), do đó IE = IF và AE = AF.
Suy ra AI là đường trung trực của đoạn thẳng EF nên AI ⊥ EF tại P.
Xét ∆APE có APE^+PAE^+AEP^=180°
Suy ra AEP^=180°-APE^-PAE^=180°-90°-12BAC^=90°-12BAC^.
Do đó AEF^=90°-12BAC^. (1)
Xét ∆IBC có là góc ngoài của tam giác tại đỉnh I nên
KIC^=IBC^+ICB^=12ABC^+12ACB^=ABC^+ACB^2=180°-BAC^2=90°-12BAC^. (2)
Từ (1) và (2), suy ra AEF^=KIC^. (4)
Từ (3) và (4), suy ra AEF^=KEC^.
Mà AEF^+CEF^=180° (hai góc kề bù) nên KEC^+CEF^=180° hay KEF^=180°.
Vậy ba điểm F, E, K thẳng hàng.
b) Xét ∆KBC vuông tại K có KM là đường trung tuyến ứng với cạnh huyền BC nên KM=12BC.
Mà M là trung điểm của BC nên MB=MC=12BC.
Do đó MB = MK nên ∆MKB cân ở M, suy ra MBK^=MKB^.
Xét ∆MKB có KMC^ là góc ngoài tại đỉnh M nên KMC^=MBK^+MKB^=2MBK^=2·ABC^2=ABC^.
Xét ∆ABC có M, N lần lượt là trung điểm của BC, AC nên MN là đường trung bình của ∆ABC, suy ra MN // AB, do đó NMC^=ABC^ (hai góc đồng vị).
Suy ra KMC^=NMC^ vì vậy ba điểm K, N, M thẳng hàng.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |