Cho hình bình hành ABCD. Đường tròn đi qua ba điểm A, B, C cắt cạnh CD ở P (P khác C và D). Tìm phát biểu sai:
A. AP = AD.
B. Tứ giác ABCP là hình thang cân.
C. APD^=ABC^.
D. PCB^+BAP^<180°.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Đáp án đúng là: D
– Vì bốn điểm A, B, C, P cùng nằm trên một đường tròn nên tứ giác ABCP nội tiếp, do đó tổng hai góc đối nhau của tứ giác này bằng 180°, suy ra:
⦁ PCB^+BAP^=180°. Do đó phương án D là sai.
⦁ ABC^+APC^=180° mà APD^+APC^=180° (hai góc kề bù)
Nên APD^=ABC^. Do đó phương án C là đúng.
– Vì ABCD là hình bình hành nên AB // CD, do đó APD^=BAP^ (hai góc so le trong)
Suy ra BAP^=ABC^.
Tứ giác ABCP có AB // CP nên là hình thang, lại có BAP^=ABC^ nên ABCP là hình thang cân. Do đó phương án B là đúng.
– Vì ABCP là hình thang cân nên AP = BC (hai cạnh bên bằng nhau)
Lại có AD = BC (do ABCD là hình bình hành)
Suy ra AP = AD. Do đó phương án A là đúng.
Vậy ta chọn phương án D.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |