Cho tam giác ABC vuông tại A, biết AB = 6 cm, BC = 11 cm.
a) Giải tam giác vuông ABC.
b) Tính độ dài đường cao AH, đường phân giác AD.
(Kết quả về cạnh làm tròn đến chữ số thập phân thứ nhất, kết quả về góc làm tròn đến độ).
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
(H.4.43)
Gọi A là gốc cây, B là điểm cây gãy, C là ngọn cây.
Trong tam giác ABC vuông tại A, ta có
\[AB = AC.\tan C = 5.\tan 20^\circ ,\]
\(\cos \widehat {ACB} = \frac = \frac{5}\) nên \(BC = \frac{5}{{\cos \widehat {ACB}}} = \frac{5}{{\cos 20^\circ }}.\)
Do đó chiều cao của cây trước khi đổ gãy là
\(AB + BC = 5.\tan 20^\circ + \frac{5}{{\cos 20^\circ }} = 5\left( {\tan 20^\circ + \frac{1}{{\cos 20^\circ }}} \right) \approx 7,1\) (m).
Vậy chiều cao của cây trước khi bị gãy là 7,1 m.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |