Bài tập  /  Bài đang cần trả lời

ĐỐ VUI. Chu vi Trái Đất bằng bao nhiêu? Vào khoảng năm 200 trước Công nguyên, Eratosthenes (Ơ-ra-tô-xten), một nhà toán học và thiên văn học người Hy Lạp, đã ước lượng được “chu vi” của Trái Đất (chu vi của đường Xích Đạo) nhờ hai quan sát sau: 1. Hồi đó, hằng năm cứ vào trưa ngày Hạ chí (21/6), người ta thấy tia sáng mặt trời chiếu thẳng xuống đáy một cái giếng sâu nổi tiếng ở thành phố Syene (Xy-en), tức là tia sáng chiếu thẳng đứng. 2. Cũng vào trưa một ngày Hạ chí, ở thành phố Alexandria ...

ĐỐ VUI. Chu vi Trái Đất bằng bao nhiêu?

Vào khoảng năm 200 trước Công nguyên, Eratosthenes (Ơ-ra-tô-xten), một nhà toán học và thiên văn học người Hy Lạp, đã ước lượng được “chu vi” của Trái Đất (chu vi của đường Xích Đạo) nhờ hai quan sát sau:

1. Hồi đó, hằng năm cứ vào trưa ngày Hạ chí (21/6), người ta thấy tia sáng mặt trời chiếu thẳng xuống đáy một cái giếng sâu nổi tiếng ở thành phố Syene (Xy-en), tức là tia sáng chiếu thẳng đứng.

2. Cũng vào trưa một ngày Hạ chí, ở thành phố Alexandria (A-lếch-xăng-đri-a) cách Syene 800 km, Erastosthenes thấy một tháp cao 25 m có bóng trên mặt đất dài 3,1 m.

Từ hai quan sát trên, ông có thể tính xấp xỉ “chu vi” của Trái Đất như thế nào? (trên Hình 4.46, điểm O là tâm Trái Đất, điểm S tượng trưng cho thành phố Syene, điểm A tượng trưng cho thành phố Alexandria, điểm H là đỉnh của tháp, bóng của tháp trên mặt đất được coi là đoạn thẳng AB).

1 Xem trả lời
Hỏi chi tiết
22
0
0
Tôi yêu Việt Nam
16/09 08:07:47

(H.4.43)

Gọi A là gốc cây, B là điểm cây gãy, C là ngọn cây.

Trong tam giác ABC vuông tại A, ta có

\[AB = AC.\tan C = 5.\tan 20^\circ ,\]

\(\cos \widehat {ACB} = \frac = \frac{5}\) nên \(BC = \frac{5}{{\cos \widehat {ACB}}} = \frac{5}{{\cos 20^\circ }}.\)

Do đó chiều cao của cây trước khi đổ gãy là

\(AB + BC = 5.\tan 20^\circ + \frac{5}{{\cos 20^\circ }} = 5\left( {\tan 20^\circ + \frac{1}{{\cos 20^\circ }}} \right) \approx 7,1\) (m).

Vậy chiều cao của cây trước khi bị gãy là 7,1 m.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập
0
0
Trần Bảo Ngọc
16/09 08:12:46

Trên Hình 4.47 đường tròn (C) với tâm O là tâm Trái Đất, đi qua S (Syene), A (Alexandria), OS = OA = R (R là bán kính của đường tròn (C)).

Theo giả thiết, cung tròn (nhỏ) SA của (C) dài 800 km.

Gọi H là đỉnh tháp, chân tại A thì A nằm giữa O và H, AH = 25 m. Bóng của tháp là cung tròn AB của (C).

Vì đường thẳng vuông góc mặt đất thì đi qua tâm O nên theo giả thiết, tia sáng mặt trời song song với OS, do đó BH song song với OS, suy ra \(\widehat {AHB} = \widehat {AOS}.\)

Vì AH = 25 m khá bé so với R, Erastosthene coi cung tròn AB của (C) là một đoạn thẳng AB = 3,1 m vuông góc với AH tạo thành tam giác BAH vuông tại A, ta có

\(\tan \widehat {AHB} = \frac = \frac{{3,1}} = 0,124.\)

Suy ra \(\tan \widehat {{\rm{AOS}}} = 0,124\) nên \(\widehat {AOS} \approx 7^\circ .\)

Vì độ dài cung tròn MN tùy ý trên đường tròn tâm O tỉ lệ thuận với số đo góc ở tâm \(\widehat {MON},\) mà độ dài cung AS bằng 800 km ứng với góc ở tâm \(\widehat {AOS} \approx 7^\circ \) nên toàn bộ đường tròn (C) ứng với góc ở tâm 360° có độ dài xấp xỉ bằng

\(\frac{{360^\circ }}{{7^\circ }}.800 \approx 41142\) (km).

Vậy chu vi của Trái Đất xấp xỉ 41142 km.

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×