Tính diện tích của hình phẳng được gạch chéo trong mỗi hình sau.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) Diện tích hình phẳng giới hạn bởi đồ thị hàm số y = cosx, trục hoành và đường thẳng x = 1 và x = −1.
Diện tích hình phẳng cần tìm là:
\[S = \int\limits_0^{\frac{{3\pi }}{2}} {\left| {\cos x} \right|dx} \]
\[ = \int\limits_0^{\frac{\pi }{2}} {\cos xdx} + \int\limits_{\frac{\pi }{2}}^{\frac{{3\pi }}{2}} {\left( { - \cos x} \right)dx} \]
\[ = \left. {\left( {\sin {\rm{x}}} \right)} \right|_0^{\frac{\pi }{2}} - \left. {\left( {\sin {\rm{x}}} \right)} \right|_{_{\frac{\pi }{2}}}^{^{\frac{{3\pi }}{2}}} = 3.\]
b) Diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2x, đường thẳng y = 4 với hai đường thẳng x = 0 và x = 2.
Diện tích hình phẳng cần tìm là:
\[S = \int\limits_0^2 {\left| {4 - {2^x}} \right|} dx = \int\limits_0^2 {\left( {4 - {2^x}} \right)dx} \]
\[ = \left. {\left( {4x - \frac{{{2^x}}}{{\ln 2}}} \right)} \right|_0^2 = 8 - \frac{3}{{\ln 2}}.\]
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |