Cho hai đường thẳng d: \[\frac{2} = \frac{y}{{ - 1}} = \frac{2}\] và d': \[\frac{3} = \frac{y}{{ - 4}} = \frac{{ - 5}}\].
a) Đường thẳng d đi qua điểm M(−2; 0; −1).
b) Đường thẳng d có vectơ chỉ phương \[\overrightarrow a = \left( { - 4;2; - 4} \right)\].
c) Đường thẳng d' không đi qua điểm N(2; 0; 1).
d) Đường thẳng d vuông góc với d'.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) Đ | b) Đ | c) S | d) Đ |
Thay tọa độ điểm M(−2; 0; −1) vào d ta được: \[\frac{{ - 2 + 2}}{2} = \frac{0}{{ - 1}} = \frac{{ - 1 + 1}}{2} = 0\].
Do đó, M(−2; 0; −1) thuộc đường thẳng d.
Đường thẳng d có vectơ chỉ phương \[\overrightarrow u = \left( {2; - 1;2} \right)\]. Vectơ \[\overrightarrow a = - 2\overrightarrow u = \left( { - 4;2; - 4} \right)\] cũng là một vectơ chỉ phương của đường thẳng d.
Thay tọa độ điểm N(2; 0; 1) vào đường thẳng d': \[\frac{3} = \frac{y}{{ - 4}} = \frac{{ - 5}}\], ta được:
\[\frac{3} = \frac{0}{{ - 4}} = \frac{{ - 5}} = 0\]. Do đó điểm N(2; 0; 1) thuộc đường thẳng d'.
Ta có: \[\overrightarrow u = \left( {2; - 1;2} \right),\overrightarrow {u'} = \left( {3; - 4; - 5} \right)\] lần lượt là vectơ chỉ phương của đường thẳng d và d'.
Có \[\overrightarrow u .\overrightarrow {u'} = 2.3 + \left( { - 1} \right).\left( { - 4} \right) + 2.\left( { - 5} \right) = 0\] do đó d vuông góc với d'.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |