Cho mặt phẳng (P) đi qua ba điểm A(0; 1; 1), B(3; 2; 2), C(4; 3; 5).
a) Mặt phẳng (P) có cặp vectơ chỉ phương là \[\overrightarrow {AB} = \left( {3;1;1} \right)\], \[\overrightarrow {AC} = \left( {4;2;4} \right)\].
b) Mặt phẳng (P) có vectơ pháp tuyến là \[\overrightarrow n = \left( {1;4;1} \right)\].
c) Mặt phẳng (P) đi qua điểm M(1; 2; 4).
d) Mặt phẳng (P) vuông góc với đường thẳng d: \[\frac{1} = \frac{y}{{ - 4}} = \frac{1}.\]
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) Đ | b) S | c) Đ | d) S |
Mặt phẳng (P) đi qua ba điểm A(0; 1; 1), B(3; 2; 2), C(4; 3; 5) nên có cặp vectơ chỉ phương là \[\overrightarrow {AB} = \left( {3;1;1} \right)\], \[\overrightarrow {AC} = \left( {4;2;4} \right)\].
Ta có: \[\overrightarrow n = \left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right] = \left( {\left| {\begin{array}{*{20}{c}}1&1\\2&4\end{array}} \right|;\left| {\begin{array}{*{20}{c}}1&3\\4&4\end{array}} \right|;\left| {\begin{array}{*{20}{c}}3&1\\4&2\end{array}} \right|} \right) = \left( {2; - 8;2} \right) = 2\left( {1; - 4;1} \right)\].
Vậy \[\overrightarrow n = \left( {1; - 4;1} \right)\] là một vectơ pháp tuyến của mặt phẳng (P).
Phương trình mặt phẳng (P) là:
1(x – 0) – 4(y – 1) + 1(z – 1) = 0 hay x – 4y + z + 3 = 0.
Thay điểm M(1; 2; 4) vào (P), ta được: 1 – 4.2 + 4 + 3 = 0.
Vậy mặt phẳng (P) đi qua điểm M(1; 2; 4).
Đường thẳng d: \[\frac{1} = \frac{y}{{ - 4}} = \frac{1}\] có vectơ chỉ phương \[\overrightarrow u = \left( {1; - 4;1} \right)\].
Ta có: α = sin(d, (P)) = \[\left| {\cos \left( {\overrightarrow u ,\overrightarrow n } \right)} \right|\]
\[ = \frac{{\left| {\overrightarrow u .\overrightarrow n } \right|}}{{\left| {\overrightarrow u } \right|.\left| {\overrightarrow n } \right|}} = \frac{{\left| {1.1 + \left( { - 4} \right).\left( { - 4} \right) + 1.1} \right|}}{{\sqrt {{1^2} + {{\left( { - 4} \right)}^2} + {1^2}} .\sqrt {{1^2} + {{\left( { - 4} \right)}^2} + {1^2}} }} = 1\].
⇒ α = 0°.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |