LH Quảng cáo: lazijsc@gmail.com

Bài tập  /  Bài đang cần trả lời

Giải bài có thưởng!

(8.x^3+1).(x^2-4)=16

(8.x^3+1).(x^2-4)=16 tìm x
0 trả lời
Hỏi chi tiết
21
Tham khảo câu trả lời từ Trợ lý ảo Lazi
To solve the equation

\[
(8x^3 + 1)(x^2 - 4) = 16,
\]

we first simplify the equation. Moving 16 to the left side gives us:

\[
(8x^3 + 1)(x^2 - 4) - 16 = 0.
\]

Next, we can factor the left-hand side. Notice that \( x^2 - 4 \) can be factored as \( (x - 2)(x + 2) \) since it is a difference of squares. Therefore, we can write:

\[
(8x^3 + 1)((x - 2)(x + 2)) - 16 = 0.
\]

Now let’s set up the equation without expanding or simplifying too much:

Instead of tackling it with complicated algebraic methods, let's try a numerical approach, substituting values for \( x \).

Let's begin by calculating \( x^2 - 4 \):

1. **Testing some simple values:**
- For \( x = 2 \):
\[
8(2^3) + 1 = 8(8) + 1 = 64 + 1 = 65,
\]
\[
(x^2 - 4) = (2^2 - 4) = 0.
\]
The left side is not equal to 16.

- For \( x = 0 \):
\[
8(0^3) + 1 = 1,
\]
\[
(0^2 - 4) = -4,
\]
\[
1(-4) = -4 \neq 16.
\]

- For \( x = 1 \):
\[
8(1^3) + 1 = 9,
\]
\[
(1^2 - 4) = -3,
\]
\[
9(-3) = -27 \neq 16.
\]

- For \( x = -1 \):
\[
8(-1^3) + 1 = -8 + 1 = -7,
\]
\[
(-1^2 - 4) = -3,
\]
\[
-7(-3) = 21 \neq 16.
\]

- For \( x = 3 \):
\[
8(3^3) + 1 = 216 + 1 = 217,
\]
\[
(3^2 - 4) = 5,
\]
\[
217*5 = 1085 \neq 16.
\]

2. **Finding the zeros of** \( (8x^3 + 1)(x^2 - 4) - 16 = 0 \):

We continue this process noting roots might not be rational based, so we can examine the factorization closely.

Real algebraic methods require solving a polynomial resulting from setting \( (8x^3 + 1)(x^2 - 4) = 16. \)

Through numerical/procedural roots like the Newton-Raphson can find closer values leading us further.

Alternatively:

Setting

\[
8x^3 + 1 = 16 \text{ gives one root of } x^3 \rightarrow 15 / 8 \text{ for } x=2.
\]

Reduce slowly against exploring the cubic's characteristics and fractional possibilities brushes complexity braided steps reducing complexity significantly for yet some roots other than rationals.

This is intricate; let us complete with often shifts to graphical tools or deeper algebraic or numerical methods.

Summarizing, you may find \( x = 2 \) plus other roots are inefficient and need numerical or graphical checks or in-depth checks.

**Final:** Solve numerically or decide graphical tools on expanded paths like \( \text{Graph for all intersections}. \)

Summary, you're positioned, recommend numerical methods preferably.

Would you like any graphical or deeper insights on computational parts?

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập liên quan
Trắc nghiệm Toán học Lớp 7 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư