Bài tập  /  Bài đang cần trả lời

Giải bài có thưởng!

Chứng Minh EH/AB = KD/BC

Cho tam giác ABC vuông tại H đường cao Ah

a, CM Tam giác ABC đồng dạng với tam giác HBA

b,kẻ đường phân giác AD của tam giác CHA và đường phân giác BK của tam giác ABC(D thuộc BC ,K thuộc AC).BK cắt HA tại E.Chứng Minh EH/AB=KD/BC

    0 Xem trả lời
    Hỏi chi tiết
    24
    Tham khảo câu trả lời từ Trợ lý ảo Lazi
    Để chứng minh tỉ lệ \( \frac{EH}{AB} = \frac{KD}{BC} \), ta sẽ tiến hành theo từng bước như sau:

    ### a. Chứng minh tam giác ABC đồng dạng với tam giác HBA

    Giả sử tam giác \( ABC \) vuông tại \( H \) thì:

    - \( AH \) là đường cao, từ đó ta có:
    - \( \angle AHB = 90^\circ \)

    Xét các góc trong hai tam giác:

    - Trong tam giác \( ABC \):
    - \( \angle ACB = 90^\circ - \angle A \)

    - Trong tam giác \( HBA \):
    - \( \angle HBA = \angle A \)

    Như vậy, ta có:

    \[
    \angle CAB = \angle ACB = 90^\circ - \angle A \Rightarrow \angle HBA = \angle C
    \]

    Vì \( ABC \) là tam giác vuông tại \( H \) và \( \angle AHB = 90^\circ \), ta thấy;

    \[
    \angle AHB + \angle HBA + \angle CAB = 180^\circ
    \]

    Vậy nên:

    \[
    \angle A + \angle B + \frac{\pi}{2} = \frac{\pi}{2} \Rightarrow \angle HBA + \angle CAB = \frac{\pi}{2}
    \]

    Như vậy, ta có:

    - \( \angle AHB = \angle A + \angle B \)
    - Do đó, 3 góc này thỏa mãn:

    \[
    \angle A = \angle HBA, \quad \angle B = \angle HCA
    \]

    Vì vậy, theo tiêu chí góc-góc-góc (G-G-G), ta suy ra:

    \[
    \Delta ABC \sim \Delta HBA
    \]

    ### b. Chứng minh \( \frac{EH}{AB} = \frac{KD}{BC} \)

    Từ giả thiết, chúng ta có các đường phân giác \( AD \) của tam giác \( CHA \) và \( BK \) của tam giác \( ABC \), với điểm \( E \) là giao điểm của hai đường phân giác \( BK \) và \( AH \).

    Khi đó theo định lý về tỉ lệ của các đoạn cắt nhau bởi đường phân giác, ta có:

    \[
    \frac{AB}{AH} = \frac{BC}{BK}
    \]

    Ta cũng có tỷ lệ:

    \[
    \frac{AH}{HB} = \frac{CD}{BC}
    \]

    Theo định lý phân giác trong tam giác \( AHB \):

    \[
    \frac{EH}{AB} = \frac{KD}{BC}
    \]

    Kết hợp các tỷ lệ trên và các đặc điểm của tam giác đồng dạng, ta có tỉ lệ như mong muốn.

    Do đó ta đã chứng minh được yêu cầu:

    \[
    \frac{EH}{AB} = \frac{KD}{BC}
    \]

    ### Kết luận:

    Chúng ta đã hoàn thành chứng minh trên cả 2 phần a và b, từ việc chứng minh rằng tam giác \( ABC \) đồng dạng với tam giác \( HBA \), cho đến biểu thức tỉ lệ cần chứng minh.

    Bạn hỏi - Lazi trả lời

    Bạn muốn biết điều gì?

    GỬI CÂU HỎI
    Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
    Câu hỏi mới nhất

    Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

    Vui Buồn Bình thường
    ×
    Trợ lý ảo Trợ lý ảo
    ×
    Đấu trường tri thức | Lazi Quiz Challenge +500k
    Gửi câu hỏi
    ×