To solve the equation
√3tan(5x+π6)=−3, we will first isolate the tangent function.
1. Divide both sides by
√3:
tan(5x+π6)=−3√3=−√3
2. We know that
tan(θ)=−√3 corresponds to angles in the second and fourth quadrants where tangent is negative. The reference angle where
tan(θ)=√3 is
π3.
Thus, the general solutions can be written as:
5x+π6=2π3+nπ(for the second quadrant)
5x+π6=−π3+nπ(for the fourth quadrant)
where
n is any integer.
### Solving for
x**For the second quadrant:**
5x+π6=2π3+nπ
Subtract
π6 from both sides:
5x=2π3−π6+nπ
To combine the terms, find a common denominator (here 6):
2π3=4π6,thus,5x=4π6−π6+nπ=3π6+nπ=π2+nπ
Now divide by 5:
x=π10+nπ5
**For the fourth quadrant:**
5x+π6=−π3+nπ
Subtract
π6:
5x=−π3−π6+nπ
Convert
−π3:
−π3=−2π6,thus,5x=−2π6−π6+nπ=−3π6+nπ=−π2+nπ
Now divide by 5:
x=−π10+nπ5
### Summary of Solutions
The complete solutions for
x are:
x=π10+nπ5andx=−π10+nπ5
for any integer
n.