\( \cos^4 \alpha - \sin^4 \alpha - \cos 4\alpha = \sin 3\alpha . \) Tham khảo câu trả lời từ Trợ lý ảo Lazi To solve the equation \( \cos^4 \alpha - \sin^4 \alpha - \cos 4\alpha = \sin 3\alpha \), we can start by rewriting the terms. 1. **Using trigonometric identities**: \[ \cos^4 \alpha - \sin^4 \alpha = (\cos^2 \alpha + \sin^2 \alpha)(\cos^2 \alpha - \sin^2 \alpha) = 1 \cdot \cos 2\alpha = \cos 2\alpha. \] 2. **Recall the identity for \(\cos 4\alpha\)**: \[ \cos 4\alpha = 2\cos^2 2\alpha - 1. \] We can also express \(\sin 3\alpha\): \[ \sin 3\alpha = 3\sin\alpha - 4\sin^3 \alpha. \] 3. **Rewrite the original equation**: The equation becomes: \[ \cos 2\alpha - \cos 4\alpha = \sin 3\alpha. \] 4. **Substituting \(\cos 4\alpha\)** gives: \[ \cos 2\alpha - (2\cos^2 2\alpha - 1) = \sin 3\alpha. \] Simplifying this leads to: \[ 1 - \cos 2\alpha - 2\cos^2 2\alpha = \sin 3\alpha. \] 5. **Final form**: This is now a trigonometric equation in \(\alpha\). To solve it, we'd typically analyze the left side depending on specific values of \(\alpha\). Taking inference from trigonometric behaviors: - Special angles like \(\alpha = 0, \frac{\pi}{4}, \frac{\pi}{2}, \frac{3\pi}{4}, \pi\) can be substituted. - To verify its correctness, evaluate both sides for those values. This structure allows you to discern possible solutions or behavioral patterns in specific ranges related to \(\alpha\).