4sin α . sin ( α - π/2 ) . sin ( 2α - π/2 ) + √3 cos 4α = 1 Tham khảo câu trả lời từ Trợ lý ảo Lazi To solve the equation \[ 4 \sin \alpha \cdot \sin \left( \alpha - \frac{\pi}{2} \right) \cdot \sin \left( 2\alpha - \frac{\pi}{2} \right) + \sqrt{3} \cos 4\alpha = 1, \] we start by simplifying the sine terms. 1. **Use the sine subtraction identity**: \[ \sin\left(\alpha - \frac{\pi}{2}\right) = -\cos \alpha, \] \[ \sin\left(2\alpha - \frac{\pi}{2}\right) = -\cos(2\alpha). \] Plugging these into the equation, it becomes: \[ 4 \sin \alpha \cdot (-\cos \alpha) \cdot (-\cos (2\alpha)) + \sqrt{3} \cos 4\alpha = 1. \] This simplifies to: \[ 4 \sin \alpha \cos \alpha \cos (2\alpha) + \sqrt{3} \cos 4\alpha = 1. \] 2. **Use the double angle and product-to-sum identities**: Recall that \( \sin(2\alpha) = 2 \sin \alpha \cos \alpha \) and \( \cos(2\alpha) = 2 \cos^2 \alpha - 1 \). We can rewrite \( 4 \sin \alpha \cos \alpha \) as \( 2 \sin (2\alpha) \): \[ 2 \sin(2\alpha) \cos(2\alpha) + \sqrt{3} \cos 4\alpha = 1. \] Now let's put this in another form using \( \sin(4\alpha) = 2 \sin(2\alpha) \cos(2\alpha) \): \[ \sin(4\alpha) + \sqrt{3} \cos(4\alpha) = 1. \] 3. **Convert to a single trigonometric function**: Notice that: \[ \sin(4\alpha) + \sqrt{3} \cos(4\alpha) = 1 \] can be represented in a single sine function as: \[ R \sin(4\alpha + \phi) = 1, \] where \( R = \sqrt{1^2 + (\sqrt{3})^2} = 2 \) and \( \phi = \tan^{-1}(\sqrt{3}/1) = \frac{\pi}{3} \). Thus, the equation becomes: \[ 2 \sin(4\alpha + \frac{\pi}{3}) = 1, \] leading to: \[ \sin(4\alpha + \frac{\pi}{3}) = \frac{1}{2}. \] 4. **Solve for \( 4\alpha + \frac{\pi}{3} \)**: The general solutions are: \[ 4\alpha + \frac{\pi}{3} = \frac{\pi}{6} + 2k\pi \quad \text{or} \quad 4\alpha + \frac{\pi}{3} = \frac{5\pi}{6} + 2k\pi \quad (k \in \mathbb{Z}). \] 5. **Finding \( \alpha \)**: From \( 4\alpha + \frac{\pi}{3} = \frac{\pi}{6} \): \[ 4\alpha = -\frac{\pi}{6} + \frac{\pi}{3} = \frac{\pi}{6} \implies \alpha = \frac{\pi}{24}. \] From \( 4\alpha + \frac{\pi}{3} = \frac{5\pi}{6} \): \[ 4\alpha = \frac{5\pi}{6} - \frac{\pi}{3} = \frac{5\pi}{6} - \frac{2\pi}{6} = \frac{3\pi}{6} = \frac{\pi}{2} \implies \alpha = \frac{\pi}{8}. \] Thus, the solutions for \( \alpha \) are \( \alpha = \frac{\pi}{24} + \frac{k\pi}{2} \) and \( \alpha = \frac{\pi}{8} + \frac{k\pi}{2} \) for integer \( k \).