Cho ΔABC. AB = 2, AC = 5, ∠A = 120°. a) Tính BC, b) Tính SΔABC, c) Tính R, d) Tính r, e) Tính d(B; AC) Tham khảo câu trả lời từ Trợ lý ảo Lazi To solve the problem for triangle \( \Delta ABC \) with given values \( AB = 2 \), \( AC = 5 \), and \( \angle A = 120^\circ \), we can use the Law of Cosines and some properties of triangles to find the necessary values. ### a) Calculate \( BC \) Using the Law of Cosines: \[ BC^2 = AB^2 + AC^2 - 2 \cdot AB \cdot AC \cdot \cos(A) \] \[ BC^2 = 2^2 + 5^2 - 2 \cdot 2 \cdot 5 \cdot \cos(120^\circ) \] Since \( \cos(120^\circ) = -\frac{1}{2} \), \[ BC^2 = 4 + 25 + 2 \cdot 2 \cdot 5 \cdot \frac{1}{2} \] \[ BC^2 = 4 + 25 + 10 = 39 \] \[ BC = \sqrt{39} \] ### b) Calculate the area \( S_{\Delta ABC} \) Using the formula for the area of a triangle with two sides and the included angle: \[ S_{\Delta ABC} = \frac{1}{2} \cdot AB \cdot AC \cdot \sin(A) \] \[ = \frac{1}{2} \cdot 2 \cdot 5 \cdot \sin(120^\circ) \] Since \( \sin(120^\circ) = \frac{\sqrt{3}}{2} \), \[ S_{\Delta ABC} = \frac{1}{2} \cdot 2 \cdot 5 \cdot \frac{\sqrt{3}}{2} = \frac{5\sqrt{3}}{2} \] ### c) Calculate the circumradius \( R \) Using the formula: \[ R = \frac{abc}{4S} \] Where \( a = BC, b = CA, c = AB \). First, we calculate \[ R = \frac{\sqrt{39} \cdot 5 \cdot 2}{4 \cdot \frac{5\sqrt{3}}{2}} = \frac{10\sqrt{39}}{10\sqrt{3}} = \frac{\sqrt{39}}{\sqrt{3}} = \sqrt{13} \] ### d) Calculate the inradius \( r \) Using the formula: \[ r = \frac{S}{s} \] where \( s = \frac{a + b + c}{2} \). First, we need \( s \): \[ s = \frac{\sqrt{39} + 2 + 5}{2} = \frac{\sqrt{39} + 7}{2} \] Then, \[ r = \frac{\frac{5\sqrt{3}}{2}}{\frac{\sqrt{39} + 7}{2}} = \frac{5\sqrt{3}}{\sqrt{39} + 7} \] ### e) Calculate the distance \( d(B; AC) \) The distance from point \( B \) to line \( AC \) can be calculated using the area: \[ d(B; AC) = \frac{2S}{AC} = \frac{2 \cdot \frac{5\sqrt{3}}{2}}{5} = \sqrt{3} \] ### Summary of Results - a) \( BC = \sqrt{39} \) - b) \( S_{\Delta ABC} = \frac{5\sqrt{3}}{2} \) - c) \( R = \sqrt{13} \) - d) \( r = \frac{5\sqrt{3}}{\sqrt{39} + 7} \) - e) \( d(B; AC) = \sqrt{3} \)