1) Một thửa đất có dạng hình chữ nhật, chiều dài hơn chiều rộng 19 m và diện tích bằng \(150\,\,\;{{\rm{m}}^2}.\) Người ta dự định xây bức tường bao quanh thửa đất, xây theo chu vi của thửa đất, trừ 5 m của phần cổng. Biết giá tất cả các chi phí xây bức tường được tính với mỗi mét theo chu vi là 2 triệu đồng. Tính số tiền dự định xây bức tường đó.
2) Cho biểu thức \(P = \frac{{\sqrt x }}{{\sqrt x - 1}} - \frac{{\sqrt x }}{{\sqrt x + 1}} - \frac{2}\) (với \(0 \le x \ne 1).\)
Rút gọn biểu thức \(P\) và tìm \(x\) để \(P\) nhận giá trị nguyên.
3) Tháp nghiêng ở thành phố Pisa, Italia nghiêng khoảng \(4^\circ \) so với phương thẳng đứng. Người ta gắn ở mặt ngoài của tháp hai thiết bị tại hai vị trí \(A,\,\,B\) và nối với nhau bởi dây truyền tín hiệu. Tính gần đúng độ dài nhỏ nhất của dây đó, biết \(HB\) gần bằng \(3,146\,\,\;{\rm{m,}}\) với \(H\) là hình chiếu vuông góc của \(A\) trên mặt đất (xem hình trên). Kết quả làm tròn đến hàng phần trăm.Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
1) Gọi \(x{\rm{\;(m)}}\) là chiều rộng của thửa đất hình chữ nhật \(\left( {x > 0} \right)\).
Chiều dài của thửa đất hình chữ nhật đó là \(x + 19{\rm{\;(m)}}{\rm{.}}\)
Diện tích của thửa đất hình chữ nhật đó là: \(x\left( {x + 19} \right){\rm{\;(}}{{\rm{m}}^2}{\rm{)}}{\rm{.}}\)
Theo bài, diện tích thửa đất bằng \(150\,\,\;{{\rm{m}}^2}\) nên ta có phương trình: \(x\left( {x + 19} \right) = 150\)
Giải phương trình:
\(x\left( {x + 19} \right) = 150\)
\({x^2} + 19x - 150 = 0\)
\({x^2} - 6x + 25x - 150 = 0\)
\(x\left( {x - 6} \right) + 25\left( {x - 6} \right) = 0\)
\(\left( {x - 6} \right)\left( {x + 25} \right) = 0\)
\(x - 6 = 0\) hoặc \(x + 25 = 0\)
\(x = 6\) (thỏa mãn) hoặc \(x = - 25\) (không thỏa mãn).
Như vậy, chiều rộng của thửa đất là \(6{\rm{\;m}}\) và chiều dài của thửa đất là \(6 + 19 = 25{\rm{\;(m)}}{\rm{.}}\)
Số mét tường cần xây là: \(2 \cdot \left( {6 + 25} \right) - 5 = 57{\rm{\;(m)}}{\rm{.}}\)
Số tiền dư định xây bức tường đó là: \(57 \cdot 2 = 114\) (triệu đồng).
2) ⦁ Với \(x \ge 0,\,\,x \ne 1,\) ta có:
\[P = \frac{{\sqrt x }}{{\sqrt x - 1}} - \frac{{\sqrt x }}{{\sqrt x + 1}} - \frac{2}\]
\[ = \frac{{\sqrt x \left( {\sqrt x + 1} \right)}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}} - \frac{{\sqrt x \left( {\sqrt x - 1} \right)}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}} - \frac{2}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}}\]
\[ = \frac{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}}\]\[ = \frac{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}}\]
\[ = \frac{{2\sqrt x - 2}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}} = \frac{{2\left( {\sqrt x - 1} \right)}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}} = \frac{2}{{\sqrt x + 1}}.\]
Như vậy, với \(x \ge 0,\,\,x \ne 1\) thì \[P = \frac{2}{{\sqrt x + 1}}.\]
⦁ Với \(x \ge 0,\,\,x \ne 1,\) ta có: \(\sqrt x + 1 > 0\) nên \(\frac{2}{{\sqrt x + 1}} > 0\) tức là \(P > 0.\)
Với \(x \ge 0,\,\,x \ne 1,\) ta cũng có \(\sqrt x + 1 \ge 1\) nên \(\frac{2}{{\sqrt x + 1}} \le 2\) tức là \(P \le 2.\)
Do đó, ta có \(0 < P \le 2.\)
Để \(P\) nhận giá trị nguyên thì \(P \in \left\{ {1;\,\,2} \right\}.\)
Với \(P = 1,\) ta có \[\frac{2}{{\sqrt x + 1}} = 1,\] suy ra \(\sqrt x + 1 = 2\) do đó \(\sqrt x = 1,\) nên \(x = 1\) (không thỏa mãn).
Với \(P = 2,\) ta có \[\frac{2}{{\sqrt x + 1}} = 2,\] suy ra \(\sqrt x + 1 = 1\) do đó \(\sqrt x = 0,\) nên \(x = 0\) (thỏa mãn).
Vậy \(x = 0\) thì \(P\) nhận giá trị nguyên.
3) Độ dài dây \(AB\) nhỏ nhất khi \(A\) và \(B\) có vị trí như hình vẽ.
Xét \(\Delta ABH\) vuông tại \(H\), ta có: \[HB = AB \cdot \sin \widehat {BAH}\]
Suy ra \[AB = \frac{{\sin \widehat {BAH}}} \approx \frac{{3,146}}{{\sin 4^\circ }} \approx 45,10{\rm{\;(m)}}{\rm{.}}\]
Vậy độ dài dây \(AB\) nhỏ nhất khoảng \(45,10{\rm{\;m}}.\)
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |