((x-5)(x+5)-(x-2)^3-7x^2+(x+1)(x^2-x+1)=(x+3)^3-(x^3+9x^2)\), \((x-4)^3-(x-5)(x^2+5x+25)=(x-2)(x^2-2x+4)-(x+4)^3-(x-7)\), \((x+1)^3-(x+3)(x^2-3x+9)=(x-3)^3+3(2x+1)^2-(x^3-5x+1)\) các bạn giúp mình làm hết với nha. Mình cảm ơn ----- Nội dung ảnh ----- 12) \((x-5)(x+5)-(x-2)^3-7x^2+(x+1)(x^2-x+1)=(x+3)^3-(x^3+9x^2)\) 13) \((x-4)^3-(x-5)(x^2+5x+25)=(x-2)(x^2-2x+4)-(x+4)^3-(x-7)\) 14) \((x+1)^3-(x+3)(x^2-3x+9)=(x-3)^3+3(2x+1)^2-(x^3-5x+1)\) 15) \(- (x+5)(x^2-5x+25)+(x+3)^3=(x-3)^2-(x-2)^3-(6x^2-x^3)\) 16) \((x-6)(x^2+6x+36)-(x+4)^3=(x-2)^3+(x+5)(x^2-10x+25)-(2x^3-6x^2)\) 17) \((2x+3)(4x^2-6x+9)-(2x-1)^3=(x+4)^3-(x-2)(x^2+2x+4)\)
Tham khảo câu trả lời từ Trợ lý ảo Lazi To solve the equations in the image, you will need to simplify each expression on the left-hand side and right-hand side, equate them, and find any potential values for \(x\) if required. I can guide you through the process for a specific equation, or help simplify if you'd like! For example, let's take the first expression: \[ (x-5)(x+5)-(x-2)^3-7x^2+(x+1)(x^2-x+1)=(x+3)^3-(x^3+9x^2) \] ### Step 1: Simplify the Left-Hand Side (LHS) 1. **Expand each term**: - \((x-5)(x+5) = x^2 - 25\) - \(-(x-2)^3 = -[(x^3 - 6x^2 + 12x - 8)] = -x^3 + 6x^2 - 12x + 8\) - \(-7x^2\) remains as is. - \((x+1)(x^2-x+1) = x^3 - x^2 + x + x^2 - x + 1 = x^3 + 1\) 2. **Combine into LHS**: \[ (x^2 - 25) + (-x^3 + 6x^2 - 12x + 8) - 7x^2 + (x^3 + 1) \] Combine like terms: - \(x^3\) cancels out, - \(6x^2 - 7x^2 + x^2= 0\), - \(-12x\), - \(-25 + 8 + 1 = -16\). So, LHS simplifies to: \[ -12x - 16 \] ### Step 2: Simplify the Right-Hand Side (RHS) 1. **Expand**: - \((x+3)^3 = x^3 + 9x^2 + 27\) - \(-(x^3 + 9x^2) = -x^3 - 9x^2\) 2. **Combine into RHS**: \[ (x^3 + 9x^2 + 27) - (x^3 + 9x^2) = 27 \] ### Step 3: Set LHS equal to RHS Now you have: \[ -12x - 16 = 27 \] ### Step 4: Solve for \(x\) 1. Add 16 to both sides: \[ -12x = 27 + 16 \] \[ -12x = 43 \] 2. Divide by -12: \[ x = -\frac{43}{12} \] Let me know if you want to go through another equation or need further assistance!