rút gọn biểu thức bangfw cách sử dụng bất phương trình xin cảm ơn đã giupd đỡ ----- Nội dung ảnh ----- Rút gọn biểu thức: 1) \(\sqrt{0,36a^2}\) với \(a<0\) 2) \(\sqrt{a^4(3-a)^2}\) với \(a>0\) 3) \(\sqrt{27 \cdot 48(1-a)^2}\) với \(a>1\) 4) \(\sqrt{\frac{2a}{3}} \cdot \sqrt{\frac{3a}{8}}\) với \(a>1\) 5) \(\sqrt{13a} \cdot \sqrt{\frac{52}{9}}\) với \(a>0\) 6) \(\sqrt{5a}, \sqrt{459} - 3a\) với \(a>0\) 7) \(\sqrt{\frac{2a^2b^4}{54}}\) 8) \(\frac{\sqrt{27a}}{\sqrt{139}}\) với \(a>0\) 9) \(\frac{y}{x} \cdot \sqrt{\frac{x}{y^4}}\) với \(x<70, y\neq0\) 10) \(2y^2\) 11) \(5x^2\) 12) ... 13) ...
0 Xem trả lời
54 Tham khảo câu trả lời từ Trợ lý ảo Lazi To simplify the expressions in the image, follow these steps for each item: 1. **Expression**: \(\sqrt{0.36a^2}, a < 0\) - Simplification: \(0.6|a|\) (since \(a\) is negative, \(|a| = -a\)) 2. **Expression**: \(\sqrt{a^4(3-a)^2}, a > 0\) - Simplification: \(a^2(3-a)\) 3. **Expression**: \(\sqrt{27 \cdot 48 (1-a)^2}, a > 1\) - Simplification: \(12\sqrt{3} (1-a)\) 4. **Expression**: \(\sqrt{\frac{2a}{3}}, \sqrt{\frac{3a}{8}}, a > 1\) - Simplification: Combine: \(\sqrt{\frac{6a}{24}} = \frac{\sqrt{a}}{2\sqrt{2}}\) 5. **Expression**: \(\sqrt{13a}, \sqrt{\frac{5^2}{9}}, a > 0\) - Simplification: \(\sqrt{13a} \cdot \frac{5}{3} = \frac{5\sqrt{13a}}{3}\) 6. **Expression**: \(\sqrt{5a}, \sqrt{459} - 3a, a > 0\) - Simplification: \(\sqrt{5a} + \sqrt{459} - 3a\) 7. **Expression**: \(\frac{\sqrt{2^2b^4}}{54}\) - Simplification: \(\frac{2b^2}{54} = \frac{b^2}{27}\) 8. **Expression**: \(\frac{\sqrt{27a}}{\sqrt{39}}, a > 0\) - Simplification: \(\frac{3\sqrt{3a}}{\sqrt{39}} = \frac{3\sqrt{3a}}{3\sqrt{13}} = \frac{\sqrt{3a}}{\sqrt{13}}\) 9. **Expression**: \(\frac{y}{x} \cdot \sqrt{\frac{x}{y^4}}, x < 0, y \neq 0\) - Simplification: \(\frac{y \sqrt{x}}{xy^2} = \frac{\sqrt{x}}{y}\) 10. **Expression**: \(\cdots, 2y^2\) - Requires more context to simplify, but the pattern follows. These steps illustrate how to perform the simplifications. Each expression can be handled similarly, extracting roots and simplifying fractions when applicable.