Bài tập  /  Bài đang cần trả lời

Trong mặt phẳng với hệ trục tọa độ Oxy, cho hai số phức \({z_1}\) có điểm biểu diễn \(M\), số phức \({z_2}\) có điểm biểu diễn là \(N\) thỏa mãn \(\left| \right| = 1,\left| \right| = 3\) và \(\widehat {MON} = {120^o }\). Giá trị lớn nhất của \(\left| {3{z_1} + 2{z_2} - 3i} \right|\) là \({M_0}\), giá trị nhỏ nhất của \(\left| {3{{\rm{z}}_1} - 2{z_2} + 1 - 2i} \right|\) là \({m_0}\). Biết \({M_0} + {m_0} = a\sqrt 7 + b\sqrt 5 + c\sqrt 3 + d\), với \(a,b,c,d \in \mathbb{Z}.a + b ...

Trong mặt phẳng với hệ trục tọa độ Oxy, cho hai số phức \({z_1}\) có điểm biểu diễn \(M\), số phức \({z_2}\) có điểm biểu diễn là \(N\) thỏa mãn \(\left| \right| = 1,\left| \right| = 3\) và \(\widehat {MON} = {120^o }\). Giá trị lớn nhất của \(\left| {3{z_1} + 2{z_2} - 3i} \right|\) là \({M_0}\), giá trị nhỏ nhất của \(\left| {3{{\rm{z}}_1} - 2{z_2} + 1 - 2i} \right|\) là \({m_0}\). Biết \({M_0} + {m_0} = a\sqrt 7 + b\sqrt 5 + c\sqrt 3 + d\), với \(a,b,c,d \in \mathbb{Z}.a + b + c + d = \) (1) ________

1 trả lời
Hỏi chi tiết
13
0
0
Phạm Minh Trí
23/10 15:40:59

Đáp án

Trong mặt phẳng với hệ trục tọa độ Oxy, cho hai số phức \({z_1}\) có điểm biểu diễn \(M\), số phức \({z_2}\) có điểm biểu diễn là \(N\) thỏa mãn \(\left| \right| = 1,\left| \right| = 3\) và \(\widehat {MON} = {120^o }\). Giá trị lớn nhất của \(\left| {3{z_1} + 2{z_2} - 3i} \right|\) là \({M_0}\), giá trị nhỏ nhất của \(\left| {3{{\rm{z}}_1} - 2{z_2} + 1 - 2i} \right|\) là \({m_0}\). Biết \({M_0} + {m_0} = a\sqrt 7  + b\sqrt 5  + c\sqrt 3  + d\), với \(a,b,c,d \in \mathbb{Z}.a + b + c + d = \) (1) __ 8 __ 

Giải thích

Gọi \({M_1}\) là điểm biểu diễn của số phức \(3{z_1}\), suy ra \(O{M_1} = 3\).

Gọi \({N_1}\) là điểm biểu diễn của số phức \(2{z_2}\), suy ra \(O{N_1} = 6\). Gọi \(P\) là điểm sao cho

\(\overrightarrow {O{M_1}}  + \overrightarrow {O{N_1}}  = \overrightarrow {OP} \). Suy ra tứ giác \(O{M_1}P{N_1}\) là hình bình hành.

Do từ giả thiết \(\widehat {MON} = {120^o }\), suy ra \({\widehat {{M_1}ON}_1} = {120^o } \Rightarrow \widehat {O{M_1}P} = {60^o }\).

Dùng định lí cosin trong tam giác \(O{M_1}{N_1}\) ta tính được \({M_1}{N_1} = \sqrt {9 + 36 - 2.3.6.\left( { - \frac{1}{2}} \right)}  = 3\sqrt 7 \);

và định lí cosin trong tam giác \(O{M_1}P\) ta có \(OP = \sqrt {9 + 36 - 2.3.6.\frac{1}{2}}  = 3\sqrt 3 \).

Ta có \({M_1}{N_1} = \left| {3{z_1} - 2{z_2}} \right| = 3\sqrt 7 ;OP = \left| {3{z_1} + 2{z_2}} \right| = 3\sqrt 3 \).

Tìm giá trị lớn nhất của \(\left| {3{{\rm{z}}_1} + 2{z_2} - 3i} \right|\).

Đặt \(3{z_1} + 2{z_2} = {w_1} \Rightarrow \left| \right| = 3\sqrt 3 \), suy ra điểm biểu diễn \({w_1}\) là \(A\) thuộc đường tròn \(\left( \right)\) tâm \(O(0;0)\) bán kính \({R_1} = 3\sqrt 3 \). Gọi điểm \({Q_1}\) là biểu diễn số phức 3i.

Khi đó \(\left| {3{{\rm{z}}_1} + 2{z_2} - 3i} \right| = A{Q_1}\), bài toán trở thành tìm \({\left( {A{Q_1}} \right)_{\max }}\) biết điểm \(A\) trên đường tròn \(\left( \right)\).

Dễ thấy \({\left( {A{Q_1}} \right)_{\max }} = O{Q_1} + {R_1} = 3 + 3\sqrt 3 \).

Tìm giá trị nhỏ nhất của \(\left| {3{{\rm{z}}_1} - 2{z_2} + 1 - 2i} \right| = \left| {3{{\rm{z}}_1} - 2{z_2} - ( - 1 + 2i)} \right|\).

Đặt \(3{z_1} - 2{z_2} = {w_2} \Rightarrow \left| \right| = 3\sqrt 7 \), suy ra điểm biểu diễn \({w_2}\) là \(B\) thuộc đường tròn \(\left( \right)\) tâm \(O(0;0)\) bán kính \({R_1} = 3\sqrt 7 \). Gọi điểm \({Q_2}\) là biểu diễn số phức \( - 1 + 2i\).

Khi đó \(\left| {3{{\rm{z}}_1} - 2{z_2} - ( - 1 + 2i)} \right| = B{Q_2}\), bài toán trở thành tìm \({\left( {B{Q_2}} \right)_{\min }}\) biết điểm \(B\) trên đường tròn \(\left( \right)\).

Dễ thấy điểm \({Q_2}\) nằm trong đường tròn \(\left( \right)\) nên \({\left( {B{Q_2}} \right)_{\min }} = {R_2} - O{Q_2} = 3\sqrt 7  - \sqrt 5 \).

Vậy \({M_0} + {m_0} = 3\sqrt 7  + 3\sqrt 3  - \sqrt 5  + 3\).

Suy ra \(a + b + c + d = 8\).

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập liên quan
Bài tập Tổng hợp Lớp 12 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư