Bài tập  /  Bài đang cần trả lời

Điền số tự nhiên thích hợp vào các chỗ trống. Từ một miếng gỗ là khối cầu có bán kính 1dm, bác thợ mộc muốn tạo thành một khối trụ sao cho hai đường tròn đáy của khối trụ thuộc mặt cầu của khối cầu đã cho (xem hình minh họa). Gọi \(h,r\) lần lượt là chiều cao và bán kính đáy của khối trụ (tính theo đơn vị \(dm\)). Khi đó ta có \(4{r^2} + {h^2} = \) (1) ________. Trong các khối trụ thỏa mãn tính chất trên, biết rằng khối trụ có diện tích toàn phần lớn nhất là \(\left( {a + \sqrt b } \right)\pi ...

Điền số tự nhiên thích hợp vào các chỗ trống.

Từ một miếng gỗ là khối cầu có bán kính 1dm, bác thợ mộc muốn tạo thành một khối trụ sao cho hai đường tròn đáy của khối trụ thuộc mặt cầu của khối cầu đã cho (xem hình minh họa).

Gọi \(h,r\) lần lượt là chiều cao và bán kính đáy của khối trụ (tính theo đơn vị \(dm\)). Khi đó ta có \(4{r^2} + {h^2} = \) (1) ________.

Trong các khối trụ thỏa mãn tính chất trên, biết rằng khối trụ có diện tích toàn phần lớn nhất là \(\left( {a + \sqrt b } \right)\pi {\rm{d}}{{\rm{m}}^2}\) (với \({\rm{a}},{\rm{b}}\) là hai số nguyên). Khi đó \(a + b = \) (2) ________.

1 Xem trả lời
Hỏi chi tiết
15
0
0
Tôi yêu Việt Nam
24/10 18:13:54

Đáp án

Gọi \(h,r\) lần lượt là chiều cao và bán kính đáy của khối trụ (tính theo đơn vị \(dm\)). Khi đó ta có \(4{r^2} + {h^2} = \) (1) ____4____.

Trong các khối trụ thỏa mãn tính chất trên, biết rằng khối trụ có diện tích toàn phần lớn nhất là \(\left( {a + \sqrt b } \right)\pi {\rm{d}}{{\rm{m}}^2}\) (với \({\rm{a}},{\rm{b}}\) là hai số nguyên). Khi đó \(a + b = \) (2) ____6____.

Giải thích

Cách 1. Ta có: \({r^2} + \frac{{{h^2}}}{4} = 1 \Rightarrow 4{r^2} + {h^2} = 4\).

\({S_{tp}} = 2\pi r\left( {r + h} \right) = 2\pi \left( {{r^2} + rh} \right)\) (1).

Áp dụng bất đẳng thức Cô-si ta có:

\(1 = \left( {\frac{{\sqrt 5  - 1}}{2}} \right){r^2} + \left( {\frac{2}{r^2} + \frac{{{h^2}}}{4}} \right) \ge \left( {\frac{{\sqrt 5  - 1}}{2}} \right){r^2} + 2\sqrt {\frac{2}{r^2}.\frac{{{h^2}}}{4}}  = \left( {\frac{{\sqrt 5  - 1}}{2}} \right)\left( {{r^2} + rh} \right)\,\,\left( 2 \right)\).

Kết hợp (1) và (2) ta suy ra \({S_{tp}} \le \pi \left( {1 + \sqrt 5 } \right)\).

\( \Rightarrow \left\{ {\begin{array}{*{20}{l}}{a = 1}\\{b = 5}\end{array}} \right.\)

Cách 2. Ta có: \({r^2} + \frac{{{h^2}}}{4} = 1 \Rightarrow 4{r^2} + {h^2} = 4\).

\({S_{tp}} = 2\pi \left( {{r^2} + rh} \right) = 8\pi \left( {\frac{{{r^2} + rh}}{{4{r^2} + {h^2}}}} \right)\)

\( = 8\pi \left( {\frac{{{{\left( {\frac{r}{h}} \right)}^2} + \frac{r}{h}}}{{4{{\left( {\frac{r}{h}} \right)}^2} + 1}}} \right) = 8\pi \frac{{{t^2} + t}}{{4{t^2} + 1}}\)

Khảo sát hàm \(f\left( t \right) = \frac{{{t^2} + t}}{{4{t^2} + 1}},t > 0\) ta suy ra \({\rm{max}}{S_{tp}} = \pi \left( {1 + \sqrt 5 } \right)\).

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Câu hỏi liên quan

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×