LH Quảng cáo: lazijsc@gmail.com

Bài tập  /  Bài đang cần trả lời

Trong không gian \(Oxyz\), cho mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} = 4\) và điểm \(M\left( {{x_0};{y_0};{z_0}} \right)\) thuộc đường thẳng \(d:\left\{ \begin{array}{l}x = 1 - t\\y = 1 + t\\z = 2\end{array} \right.\). Ba điểm phân biệt \(A,B,C\) cùng thuộc mặt cầu \(\left( S \right)\) sao cho \(MA,MB,MC\) là ba tiếp tuyến của mặt cầu. Biết rằng mặt phẳng \(\left( {ABC} \right)\) đi qua điểm \(D\left( {1;2;1} \right)\) và có vectơ pháp tuyến \(\vec n = \left( {a;b;1} \right)\). Kéo số ...

Trong không gian \(Oxyz\), cho mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} = 4\) và điểm \(M\left( {{x_0};{y_0};{z_0}} \right)\) thuộc đường thẳng \(d:\left\{ \begin{array}{l}x = 1 - t\\y = 1 + t\\z = 2\end{array} \right.\). Ba điểm phân biệt \(A,B,C\) cùng thuộc mặt cầu \(\left( S \right)\) sao cho \(MA,MB,MC\) là ba tiếp tuyến của mặt cầu. Biết rằng mặt phẳng \(\left( {ABC} \right)\) đi qua điểm \(D\left( {1;2;1} \right)\) và có vectơ pháp tuyến \(\vec n = \left( {a;b;1} \right)\).

Kéo số ở các ô vuông thả vào vị trí thích hợp trong các câu sau:

Giá trị của \(a + b\) bằng _______.

Tọa độ điểm \(M\) là ( _______; _______; 2).

1 trả lời
Hỏi chi tiết
12
0
0
Bạch Tuyết
24/10 18:15:41

Đáp án

Giá trị của \(a + b\) bằng 1 .

Tọa độ điểm \(M\) là ( 2 ; 0 ; 2).

Giải thích

Vì \(M\left( {{x_0};{y_0};{z_0}} \right) \in d:\left\{ {\begin{array}{*{20}{l}}{x = 1 - t}\\{y = 1 + t{\rm{\;n\^e n\;}}{x_0} + {y_0} + {z_0} = \left( {1 - t} \right) + \left( {1 + t} \right) + 2 = 4.}\\{z = 2}\end{array}} \right.\)

Mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} = 4\) có tâm \(O\left( {0;0;0} \right)\), bán kính \(R = 2\).

Vì \(MA,MB,MC\) là tiếp tuyến của mặt cầu \(\left( S \right)\) nên \(MO\) vuông góc với mặt phẳng \(\left( {ABC} \right)\).

Gọi \(H = MO \cap \left( {ABC} \right)\) suy ra \(AH \bot MO\).

Mặt phẳng \(\left( {ABC} \right)\) đi qua điểm \(D\left( {1;2;1} \right)\) và có vectơ pháp tuyến là \(\overrightarrow {OM}  = \left( {{x_0};{y_0};{z_0}} \right)\) nên có phương trình là: \({x_0}\left( {x - 1} \right) + {y_0}\left( {y - 2} \right) + {z_0}\left( {z - 1} \right) = 0\).

Vì \(MA\) là tiếp tuyến của mặt cầu \(\left( S \right)\) nên \(MA \bot OA\) hay tam giác \(MAO\) vuông tại \(A\). Suy ra \(OH.OM = O{A^2} = {R^2} = 4\).

Ta có: \(OH = d\left( {O,\left( {ABC} \right)} \right) = \frac{{\left| { - {x_0} - 2{y_0} - {z_0}} \right|}}{{\sqrt {x_0^2 + y_0^2 + z_0^2} }} = \frac{{\left| {{y_0} + 4} \right|}}\) suy ra \(OH.OM = \left| {{y_0} + 4} \right|\).

Do đó \({y_0} = 0\).

Với \({y_0} = 0 \Rightarrow t =  - 1\) suy ra điểm \(M\left( {2;0;2} \right)\).

Kiểm tra lại, với \(M\left( {2;0;2} \right)\) khi đó \(OM = 2\sqrt 2 ,OH = \frac{{\left| {0 + 4} \right|}} = \frac{4}{{2\sqrt 2 }} = \sqrt 2 \).

Phương trình mặt phẳng \(\left( {ABC} \right)\) là: \(2\left( {x - 1} \right) + 2\left( {z - 1} \right) = 0\) hay \(x + z - 2 = 0\).

\( \Rightarrow a = 1;b = 0 \Rightarrow a + b = 1\).

Mặt khác, \(MH = d\left( {M,\left( {ABC} \right)} \right) = \frac{{\left| {2 + 2 - 2} \right|}}{{\sqrt {{1^2} + {1^2}} }} = \sqrt 2 \).

Ta có \(OH + MH = OM\) nên điểm \(H\) nằm giữa hai điểm \(O\) và \(M\) (thỏa mãn).

Vậy có duy nhất điểm \(M\left( {2;0;2} \right)\) thỏa mãn ycbt.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập liên quan
Bài tập Tổng hợp Lớp 12 mới nhất
Trắc nghiệm Tổng hợp Lớp 12 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư