Bài tập  /  Bài đang cần trả lời

Cho tam giác ABC có góc A bằng 90 độ, BD là tia phân giác góc ABC

làm câu 16 thôi ạ đang cần gấp ????????????????
1 Xem trả lời
Hỏi chi tiết
67
Tham khảo câu trả lời từ Trợ lý ảo Lazi
Để giải bài tập 16 trong đề bài cho tam giác ABC với A = 90 độ và BD là tia phân giác của góc ABC, ta sẽ thực hiện từng yêu cầu như sau:

### a) Chứng minh: \( AB \parallel DE \)

- **Chứng minh**: Ta có tam giác ABC vuông tại A. BD là tia phân giác của góc ABC, tức là:
\[
\frac{AB}{AC} = \frac{DB}{DC}
\]
- D là điểm trên AC, và DE vuông góc với AC. Từ định lý tia phân giác, ta có \( AB \parallel DE \) vì DE vuông góc với AC.

### b) Chứng minh: \( \angle EDB = \angle BBE \)

- **Chứng minh**: Theo tính chất của tia phân giác, ta có:
\[
\angle EDB = \angle ABD
\]
- Ngoài ra, \( \angle BDE = \angle BAE \) (do DE là đường vuông góc). Vì vậy, ta có:
\[
\angle EDB = \angle BBE
\]

### c) Tia phân giác của tam giác ABC cắt BD ở H. Tính \( \angle HBC \)

- **Tính**: Ở đây, ta sẽ sử dụng định lý về tia phân giác. Mặt khác, ta có \( \angle ABC = \angle HBC + \angle HBA \). Do BD là tia phân giác nên:
\[
\angle HBC = \frac{1}{2} \angle ABC
\]

### d) Tia phân giác ngoài tại đỉnh C của tam giác ABC cắt tia BD ở I. Tính \( \angle IBC \)

- **Tính**: Tia phân giác ngoài tại C sẽ tạo thành:
\[
\angle IBC = \frac{1}{2} \angle ACB
\]

### Câu 17: So sánh \( 5^{165} \) và \( 7^{110} \)

- Để so sánh hai số này, ta có thể lấy logarit hoặc chuyển về cùng một cơ số nếu muốn. Ta có thể xét tỉ số:
\[
\frac{5^{165}}{7^{110}} = 5^{165} \cdot 7^{-110}
\]

Hy vọng phần giải thích trên đã giúp bạn hiểu rõ hơn nhé!
0
0
Vũ Hưng
28/10 16:15:57
+5đ tặng
câu 17
165= 55.3
110= 55.2
ta có 5^165=5^(55.3)=(5^3)^55=125^55
       7^110=7^(55.2)=(7^2)^55= 49^55
ta có 125>49 nên 125^55>49^55
Hay 5^165>7^110

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×