LH Quảng cáo: lazijsc@gmail.com

Bài tập  /  Bài đang cần trả lời

Giải bài có thưởng!

Tìm giá trị lớn nhất của biểu thức sau: \[ B = \frac{2025}{(4x - 5)^2 + 3} \]

----- Nội dung ảnh -----
Câu 6: (0,5 điểm) Tìm giá trị lớn nhất của biểu thức sau:

\[ B = \frac{2025}{(4x - 5)^2 + 3} \]
0 trả lời
Hỏi chi tiết
83
Tham khảo câu trả lời từ Trợ lý ảo Lazi
Để tìm giá trị lớn nhất của biểu thức

\[
B = \frac{2025}{(4x - 5)^2 + 3},
\]

ta nhận thấy rằng mẫu số của biểu thức, \((4x - 5)^2 + 3\), luôn dương và đạt giá trị tối thiểu khi \((4x - 5)^2\) nhỏ nhất.

Giá trị nhỏ nhất của \((4x - 5)^2\) là 0 (khi \(4x - 5 = 0\), tức là \(x = \frac{5}{4}\)). Khi đó, mẫu số trở thành:

\[
(4x - 5)^2 + 3 = 0 + 3 = 3.
\]

Như vậy, khi \(x = \frac{5}{4}\), ta có:

\[
B = \frac{2025}{3} = 675.
\]

Do đó, giá trị lớn nhất của biểu thức \(B\) là:

\[
\boxed{675}.
\]

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Trắc nghiệm Toán học Lớp 7 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư