Bài tập  /  Bài đang cần trả lời

Hình thang ABCD có BC // AD (BC < AD); AC = CD, AC là tia phân giác BAD. Chứng minh ABCD là hình thang

help meee-(
----- Nội dung ảnh -----
G7
Hình thang ABCD
BC // AD (BC < AD)
AC = CD, AC là tia phân giác BAD
KL
a) ABCD là hình thang.
b) Qua C kẻ đường thẳng AB cắt AD tại E, C / m ABCF là hình bình hành.
1 Xem trả lời
Hỏi chi tiết
56
Phạm Thành Hưng Hưng
à nhầm
02/11 20:38:57
Phạm Thành Hưng Hưng
Xét ▲ADC và ▲BCD có: AD = BC ( gt ) AC = BD ( gt ) DC chung => ▲ADC = ▲BCD ( c.c.c ) => góc D = góc C ( c.t.ứ ) cmtt ta đc góc A = Góc B Mà Góc D + góc A + Góc C + Góc B=360o => 2GócA+2GócD=360o -> gócA+gócD=180o ( 2 góc trong cùng phía )=>AB//DC -> ABCD là hình thang Vì góc D = góc C (cmt) nên ABCD là hình thang cân
02/11 20:42:30
KẹoMút Ðẹptrai
Phạm Thành ... Tớ camon<3
02/11 20:43:13
Phạm Thành Hưng Hưng
Ok ko
02/11 20:42:41
Tham khảo câu trả lời từ Trợ lý ảo Lazi
Để chứng minh hình thang ABCD với các điều kiện đã cho, ta sẽ làm theo các bước sau:

### Đề bài:
- Hình thang ABCD có BC // AD (BC < AD).
- AC = CD, AC là tia phân giác của góc BAD.

### Chứng minh:
1. **Chứng minh ABCD là hình thang**:
- Vì BC // AD, theo định nghĩa, ABCD là hình thang.

2. **Chứng minh AB // ED bằng cách sử dụng các tính chất của tia phân giác**:
- Do AC = CD và AC là tia phân giác của góc BAD, ta có:
\[
\angle BAC = \angle DAC
\]
- Từ đó và với BC // AD, ta suy ra rằng:
\[
\angle ABC = \angle ADC
\]
- Theo định nghĩa về hình thang, điều này chứng tỏ rằng AB // CD.

### Kết luận:
ABCD là hình thang, với BC // AD và AB // CD.
0
0
Nguyen Tuyen Anh
02/11 21:51:35
+3đ tặng
a, Trong tam giác CAD,gócDCA+CDA+CAD=180 độ
=90+60+CAD=180
Suy ra CAD=30 độ
Mà CAD=1/2BAD
Suy ra BAD=60 độ
Vậy góc BAD=CDA=60 độ
Vì thế nên ht ABCD là ht cân
b,Ta có AB//CE(gt)
BC//AD mà E thuộc AD nên BC//AE
Do đó,ABCE là hbh
Pls tim cho mink vs ạ

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×