LH Quảng cáo: lazijsc@gmail.com

Bài tập  /  Bài đang cần trả lời

Cho △ABC vuông tại A, đường cao AH. Biết AB = 6cm, AH = 5cm. (số đo góc làm tròn đến độ, độ dài làm tròn đến chữ số thập phân thứ 2)

giup em voi a
----- Nội dung ảnh -----
Câu IV (2,5 điểm) Cho △ABC vuông tại A, đường cao AH. Biết AB = 6cm, AH = 5cm.
(số đo góc làm tròn đến độ, độ dài làm tròn đến chữ số thập phân thứ 2)

1) Tính độ dài BH và số đo \( \overline{B} \).
2) Tính độ dài AC.
3) Lấy điểm D trên đoạn thẳng CH sao cho \( \overline{DAC} = 30^\circ \). Tính diện tích △ADC.
1 trả lời
Hỏi chi tiết
808
Tham khảo câu trả lời từ Trợ lý ảo Lazi
Để giải bài toán này, ta sẽ thực hiện từng phần theo yêu cầu.

### 1) Tính độ dài BH và số đo ∠B.

Trong tam giác vuông ABC, theo định lý Pythagore:

\[
AB^2 = AH^2 + BH^2
\]

Thay số vào:

\[
6^2 = 5^2 + BH^2 \implies 36 = 25 + BH^2 \implies BH^2 = 36 - 25 = 11 \implies BH = \sqrt{11} \approx 3.32 \text{ cm}
\]

### Số đo ∠B:

Ta có thể sử dụng hàm số lượng giác:

\[
\tan B = \frac{AH}{BH} = \frac{5}{\sqrt{11}}
\]

Tính giá trị:

\[
\angle B \approx \tan^{-1}\left(\frac{5}{\sqrt{11}}\right)
\]
Sử dụng máy tính để tìm:

\[
\angle B \approx 48.37^\circ \implies \angle B \approx 48^\circ \text{ (làm tròn đến độ)}
\]

### 2) Tính độ dài AC.

Trong tam giác vuông ABC, theo định lý Pythagore:

\[
AC^2 = AB^2 + AH^2
\]

Thay số vào:

\[
AC^2 = 6^2 + 5^2 = 36 + 25 = 61 \implies AC = \sqrt{61} \approx 7.81 \text{ cm}
\]

### 3) Tìm điểm D trên thẳng CH sao cho \(\angle DAC = 30^\circ\) và tính diện tích ∆ADC.

**Diện tích ∆ADC:**

Gọi chiều dài CH là x (khoảng cách từ H đến C), sử dụng định lý sin trong tam giác ADC có góc DAC = 30°:

\[
\sin(30^\circ) = \frac{AH}{AD}
\]

Có:

\[
AD = \frac{5}{\sin(30^\circ)} = \frac{5}{0.5} = 10 \text{ cm}
\]

Diện tích ∆ADC được tính bằng công thức:

\[
\text{Diện tích} = \frac{1}{2} \cdot AC \cdot AH \cdot \sin(30^\circ)
\]

Giá trị:

\[
\text{Diện tích} = \frac{1}{2} \cdot \sqrt{61} \cdot 5 \cdot 0.5 = \frac{5\sqrt{61}}{4} \approx \frac{5 \cdot 7.81}{4} \approx \frac{39.05}{4} \approx 9.76 \text{ cm}^2
\]

### Kết quả:
1. \( BH \approx 3.32 \text{ cm} \), \( \angle B \approx 48^\circ \)
2. \( AC \approx 7.81 \text{ cm} \)
3. Diện tích ∆ADC \( \approx 9.76 \text{ cm}^2 \)
1
3
Đặng Mỹ Duyên
03/11 09:51:43
+5đ tặng
Đáp án
Câu IV:
 
(1) Tính độ dài BH và số đo góc B:
 
* Áp dụng định lý Pytago cho tam giác vuông ABH:
 
BH^2 = AB^2 - AH^2 = 6^2 - 5^2 = 11
BH = 11=3.32 cm
 
* Áp dụng tỉ số lượng giác trong tam giác vuông ABH:
 
tanB = AH/BH = 5/11=1.51
B arctan(1.51) = 56°
(2) Tính độ dài AC:
 
* Áp dụng định lý Pytago cho tam giác vuông ABC:
 
AC^2 = BC^2 - AB^2 = (BH + HC)^2 - AB^2
 
* Để tính HC, ta áp dụng tỉ số lượng giác trong tam giác vuông ABH:
 
cosB = BH/AB= 11/6
HC = AB  tanB = 6 5/11 9.05 cm
 
* Thay vào công thức tính AC:
 
AC^2 = (3.32 + 9.05)^2 - 6^2 144.96 
AC= 144.96 =12.04 cm
 
(3) Tính diện tích tam giác ADC:
 
 Áp dụng tỉ số lượng giác trong tam giác vuông ACD:
 
sin30° = CD/AC=>CD = ACsin30= 12.04 0.5 = 6.02 cm
 
* Diện tích tam giác ADC:
 
SADC = 1/2AD CD
 
* Để tính AD, ta áp dụng định lý Pytago cho tam giác vuông ACD:
 
AD^2 = AC^2 - CD^2 = 12.04^2 - 6.02^2 = 108.36
AD =√108.36= 10.41 cm
 
* Thay vào công thức tính diện tích:
 
SADC = 1/2 .10.41 =6.02 =31.34 cm^2
 
Kết luận:
 
* BH ≈ 3.32 cm
* B ≈ 56°
* AC ≈ 12.04 cm
* SADC≈ 31.34 cm²
 

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập liên quan
Trắc nghiệm Toán học Lớp 9 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư