Chứng minh \[ \frac{1}{a^3+b^3+1} + \frac{1}{b^3+c^3+1} + \frac{1}{c^3+a^3+1} < 1 \] Tham khảo câu trả lời từ Trợ lý ảo Lazi To prove the inequality \[ \frac{1}{a^3+b^3+1} + \frac{1}{b^3+c^3+1} + \frac{1}{c^3+a^3+1} < 1, \] given that \( a, b, c > 0 \) and \( abc = 1 \), we can start by applying the method of Titu's lemma (also known as the Cauchy-Schwarz inequality). Using the Cauchy-Schwarz inequality, we can rewrite each fraction: \[ \frac{1}{a^3 + b^3 + 1} < \frac{1}{a^3 + b^3 + c^3} \quad \text{(since } c^3 > 0\text{)}, \] \[ \frac{1}{b^3 + c^3 + 1} < \frac{1}{b^3 + c^3 + a^3}, \] \[ \frac{1}{c^3 + a^3 + 1} < \frac{1}{c^3 + a^3 + b^3}. \] Now summing these inequalities gives us: \[ \frac{1}{a^3+b^3+1} + \frac{1}{b^3+c^3+1} + \frac{1}{c^3+a^3+1} < \frac{1}{a^3+b^3+c^3}. \] Next, we can apply the AM-GM inequality: \[ a^3 + b^3 + c^3 \geq 3\sqrt[3]{(abc)^3} = 3\sqrt[3]{1} = 3. \] Thus, we have: \[ \frac{1}{a^3 + b^3 + c^3} \leq \frac{1}{3}. \] Now, we note that: \[ \frac{1}{a^3 + b^3 + 1} + \frac{1}{b^3 + c^3 + 1} + \frac{1}{c^3 + a^3 + 1} < \frac{1}{3}, \] which implies that: \[ \frac{1}{a^3 + b^3 + 1} + \frac{1}{b^3 + c^3 + 1} + \frac{1}{c^3 + a^3 + 1} < 1. \] Consequently, we have proved the required inequality: \[ \frac{1}{a^3+b^3+1} + \frac{1}{b^3+c^3+1} + \frac{1}{c^3+a^3+1} < 1. \]