Bài tập  /  Bài đang cần trả lời

CMR 2n-1 và 5n+2 NTCN

CMR 2n-1 và 5n+2 NTCN
1 trả lời
Hỏi chi tiết
29
Tham khảo câu trả lời từ Trợ lý ảo Lazi
Để tìm NTCN (nhân tử chung lớn nhất) của hai biểu thức \( 2n - 1 \) và \( 5n + 2 \), chúng ta sẽ sử dụng phương pháp ước chung.

1. **Xét hai biểu thức:**
- \( a = 2n - 1 \)
- \( b = 5n + 2 \)

2. **Xét trường hợp \( n = 1 \):**
- \( a = 2(1) - 1 = 1 \)
- \( b = 5(1) + 2 = 7 \)
- NTCN của 1 và 7 là 1.

3. **Xét trường hợp \( n = 2 \):**
- \( a = 2(2) - 1 = 3 \)
- \( b = 5(2) + 2 = 12 \)
- NTCN của 3 và 12 là 3.

4. **Xét trường hợp \( n = 3 \):**
- \( a = 2(3) - 1 = 5 \)
- \( b = 5(3) + 2 = 17 \)
- NTCN của 5 và 17 là 1.

5. **Xét trường hợp \( n = 4 \):**
- \( a = 2(4) - 1 = 7 \)
- \( b = 5(4) + 2 = 22 \)
- NTCN của 7 và 22 là 1.

Từ những số liệu trên, có thể thấy rằng và tùy thuộc vào giá trị của \( n \), NTCN của \( 2n - 1 \) và \( 5n + 2 \) có thể thay đổi.

Để tìm NTCN một cách tổng quát hơn, bạn có thể cần đến các kỹ thuật tính toán trong đại số hoặc lý thuyết số, nhưng trong trường hợp này, NTCN của hai biểu thức không phải là một hằng số cố định.

Nếu bạn muốn biết thêm chi tiết cụ thể về việc tìm NTCN cho các giá trị cụ thể khác hoặc muốn tìm công thức tổng quát hơn, hãy cho tôi biết!
1
0
Vũ Hưng
09/11 21:41:29
+5đ tặng
giả sử (2n-1;5n+2)=d
hay 2n-1 chia hết cho d
5n+4 chia hết cho d
hay n+6 chia hết cho d
hay 2n+12 chia hết cho d
hay 13 chia hết cho d
nên d=1 hoặc d=13
mà 5n+4 không thể chia hết cho 13 nên d=1

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư