Cho đường tròn (O; R) và một điểm M nằm ngoài đường tròn. Từ M kẻ các tiếp tuyến MB, MC tới (O) (B, C là các tiếp điểm). Gọi H là giao điểm của MO với BC. Vẽ đường kính BA
----- Nội dung ảnh ----- 2) Cho đường tròn (O; R) và một điểm M nằm ngoài đường tròn. Từ M kẻ các tiếp tuyến MB, MC tới (O) (B, C là các tiếp điểm). Gọi H là giao điểm của MO với BC. Về đường kính BA. a) Chứng minh: Các điểm M, B, C, O cùng nằm trên một đường tròn. b) Chứng minh: CH² = OH.HM. c) Gọi F là trung điểm của MH, AH cắt (O) tại giao điểm thứ hai là Q. Chứng minh ∆MBH đồng dạng ∆BAC và B, Q, F thẳng hàng.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).