Rút gọn C = \left( \frac{\sqrt{x}}{\sqrt{x-1}} + \frac{2}{x-\sqrt{x}} \right) \cdot \frac{1}{\sqrt{x-1}} Tham khảo câu trả lời từ Trợ lý ảo Lazi To simplify the expression \[ C = \left( \frac{\sqrt{x}}{\sqrt{x-1}} + \frac{2}{x-\sqrt{x}} \right) \cdot \frac{1}{\sqrt{x-1}}, \] follow these steps: 1. **Rewrite the second term**: Start with the second term \( \frac{2}{x - \sqrt{x}} \). We can simplify \( x - \sqrt{x} \): \[ x - \sqrt{x} = \sqrt{x}(\sqrt{x} - 1), \] so, \[ \frac{2}{x - \sqrt{x}} = \frac{2}{\sqrt{x}(\sqrt{x} - 1)} = \frac{2}{\sqrt{x}} \cdot \frac{1}{\sqrt{x}-1}. \] 2. **Combine the terms inside the parentheses**: \[ \frac{\sqrt{x}}{\sqrt{x-1}} + \frac{2}{\sqrt{x}(\sqrt{x}-1)}. \] To add these two fractions, find a common denominator, which is \( \sqrt{x-1} \cdot \sqrt{x}(\sqrt{x} - 1) \): \[ = \frac{\sqrt{x}(\sqrt{x}(\sqrt{x}-1)) + 2\sqrt{x - 1}}{\sqrt{x-1}\cdot \sqrt{x}(\sqrt{x}-1)}. \] 3. **Evaluate the entire expression**: \[ C = \left( \frac{\sqrt{x} \cdot (\sqrt{x}(\sqrt{x}-1)) + 2\sqrt{x-1}}{\sqrt{x-1}\cdot \sqrt{x}(\sqrt{x}-1)} \right) \cdot \frac{1}{\sqrt{x-1}}. \] This simplifies further: \[ C = \frac{\sqrt{x}(\sqrt{x}(\sqrt{x}-1)) + 2\sqrt{x-1}}{(\sqrt{x-1})^2 \cdot \sqrt{x}(\sqrt{x}-1)}. \] 4. **Final Form**: This will yield the final simplified form of \( C \), combining terms wherever necessary. Thus, the simplified expression for \( C \) is: \[ C = \frac{\sqrt{x}(\sqrt{x}(\sqrt{x}-1)) + 2\sqrt{x-1}}{(x-1) \sqrt{x}(\sqrt{x}-1)}. \]