----- Nội dung ảnh ----- 1) a) Thể gm: A = 1 + 5 + 5² + 5³ + ... + 5²⁰ = 2024 \(\sqrt{\frac{1}{625} + \frac{1}{25} + 1}: \frac{1}{25} - 1\)
0 Xem trả lời
7 Tham khảo câu trả lời từ Trợ lý ảo Lazi To simplify the expression \( A = 1 + \frac{1}{5} + \frac{1}{5^2} + \frac{1}{5^3} + \ldots + \frac{1}{5^{2024}} \), we can recognize this as a geometric series. The formula for the sum of a geometric series is: \[ S_n = a \frac{1 - r^n}{1 - r} \] where: - \( S_n \) is the sum of the first \( n \) terms, - \( a \) is the first term, - \( r \) is the common ratio, - \( n \) is the number of terms. For our series: - \( a = 1 \) - \( r = \frac{1}{5} \) - \( n = 2025 \) (since we have terms from \( 0 \) to \( 2024 \)) Now we apply the formula: \[ A = 1 \cdot \frac{1 - \left(\frac{1}{5}\right)^{2025}}{1 - \frac{1}{5}} = \frac{1 - \left(\frac{1}{5}\right)^{2025}}{\frac{4}{5}} \] Simplifying this expression gives: \[ A = \frac{5}{4} \left(1 - \left(\frac{1}{5}\right)^{2025}\right) \] So the simplified form of \( A \) is: \[ A = \frac{5}{4} \left( 1 - \frac{1}{5^{2025}} \right) \]