c) 4(x + 5)(x + 6)(x + 10)(x + 12) = 3x^2
<=> 4(x + 5)(x + 12)(x + 6)(x + 10) = 3x^2
<=> 4(x^2 + 60 + 17x)(x^2 + 60 + 16x) = 3x^2
Đặt a = x^2 + 60 + 16x
<=> 4(a + x)a = 3x^2
<=> 4a^2 + 4ax - 3x^2 = 0
<=> (2a)^2 + 2.2a.x + x^2 - 4x^2 = 0
<=> (2a + x)^2 - (2x)^2 = 0
<=> (2a + x - 2x)(2a + x + 2x) = 0
<=> (2a - x)(2a + 3x) = 0
=> 2a - x = 0 hoặc 2a + 3x = 0
<=> 2(x^2 + 60 + 16x) - x = 0 <=> 2(x^2 + 60 + 16x) + 3x = 0
<=> 2x^2 + 120 + 32x - x = 0 <=> 2x^2 + 120 + 32x + 3x = 0
<=> 2x^2 + 31x + 120 = 0 <=> 2x^2 + 35x + 120 = 0
<=> 2x^2 + 16x + 15x + 120 = 0 <=> 2(x^2 + 17.5x + 60) = 0
<=> 2x(x + 8) + 15(x + 8) = 0 <=> x^2 + 17.5x + 60 = 0
<=> (2x + 15)(x + 8) = 0 <=> x^2 + 2.x.8.75 + 8.75^2 - 8.75^2 + 60 = 0
<=> x = -15/2 hoặc x = -8 <=> (x + 8.75)^2 = 76.5625 - 60
<=> (x + 8.75)^2 = 16.5625
<=> x + 8.75 = 4.069705149 hoặc x + 8,75 = -4.069705149
<=> x = -4.680294851 <=> x = -12.819705149
Vậy x = -15/2 hoặc x = -8 hoặc x = -4.680294851 hoặc x = -12.819705149