bài a.
DEA = EAF = AFD = 900
=> AEDF là hình chữ nhật.
b.
AB // ED (AEDF là hình chữ nhât)
D là trung điểm của BC (gt)
=> F là trung điểm của AC
=> DF là đường trung bình của tam giác CAB
=> DF = AB/2
mà DF = DN/2 (F là trung điểm của DN)
=> AB = DN
mà AB // DN
=> ABDN là hình bình hành.
c.
AC // ED (AEDF là hình chữ nhật)
D là trung điểm của BC (gt)
=> E là trung điểm của AB
mà E là trung điểm của MD
=> AMBD là hình bình hành
mà AB _I_ MD
=> AMBD là hình thoi
=> AM // BD
mà AN // BD (ABDN là hình bình hành)
=> AM ≡≡ AN
=> A, M, N thẳng hàng.
d.
AEDF là hình vuông
<=> AD là tia phân giác của BAC
mà AD là đường trung tuyến của tam giác ABC (D là trung điểm của BC)
=> Tam giác ABC cân tại A
mà tam giác ABC vuông tại A (gt)
=> Tam giác ABC vuông cân tại A
Vậy AEDF là hình vuông khi tam giác ABC vuông cân tại A.