Cho tam giác ABC có D là chân đường phân giác trong, D thuộc BC. Đường thẳng qua D vuông góc với BC cắt phân giác ngoài tại đỉnh A ở I. Vẽ đường tròn (I;ID) cắt AB,AC lần lượt tại E,F. Gọi G là tâm ngoại tiếp tam giác AEF, K là giao điểm của đường đối trung xuất phát từ A của tam giác AEF với (AEF). Chứng minh rằng đường thẳng KG luôn đi qua điểm cố định khi A thay đổi trên cung lớn BC của (ABC).
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |