Bài tập  /  Bài đang cần trả lời

Có những cách nào CM vuông góc

Có những cách nào CM vuông góc
 

2 Xem trả lời
Hỏi chi tiết
1.154
2
2
Bảo Trân
09/12/2020 20:38:29
+5đ tặng
1. Hai đường thẳng đó cắt nhau và tạo ra một góc 90.
2. Hai đường thẳng đó chứa hai tia phân giác của hai góc kề bù.
3. Hai đường thẳng đó chứa hai cạnh của tam giác vuông.
4. Tính chất từ vuông góc đến song song : Có một đường thẳng thứ 3 vừa song song với đường thẳng thứ nhất vừa vuông góc với đường thẳng thứ hai.
5. Sử dụng tính chất đường trung trực của đoạn thẳng. Tính chất : Mọi điểm cách đều hai đầu mút của đoạn thẳng thì nằm trên đường trung trực của đoạn thẳng đó.
6. Sử dụng tính chất trực tâm của tam giác.
7. Sử dụng tính chất đường phân giác, trung tuyến ứng với cạnh đáy của tam giác cân.
8. Hai đường thẳng đó chứa hai đường chéo của hình vuông, hình thoi.
9. Sử dụng tính chất đường kính và dây cung trong đường tròn.
10. Sử dụng tính chất tiếp tuyến trong đường tròn

 

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập
1
1
Nguyễn Anh Minh
09/12/2020 20:41:12
+3đ tặng
Cách 1: (Theo Định nghĩa 2 đường thẳng vuông góc)
Cách 2: Theo Hệ quả của 2 đường thẳng song song 2
Cách 3: Dùng tính chất của ba đường cao và cạnh đối diện trong một tam giác. Trong ∆ABC có AH BC; CI AB Þ BO AC tại K
Cách 4: Đường kính đi qua trung điểm của một dây cung. AB là dây cung trong đường tròn O Néu AM = MB Þ OM AB
Cách 5: Phân giác của hai góc kề bù nhau. Có ÐxOz kề bù ÐzOy Nếu O1 = O2 và O3 = O 4 Þ O2 + O3 = 90O hay OmOn
Cách 6: Sử dụng góc nội tiếp nửa đường tròn. Trên đường tròn tâm O, đường kính AB Þ Mọi đỉểm M trên đường tròn đều có AM ^BM
Cách 7: Sử dụng tính chất đường trung trực. Có H là trung điểm của AB; Điểm M cách đều A và B Þ MH ^AB Cách 8: Tính chất tiếp tuyến và đường kính của đường tròn.

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×