Cho hai mặt phẳng (α), (β) vuông góc với nhau. Người ta lấy trên giao tuyến Δ của hai mặt phẳng đó hai điểm A và B sao cho AB = 8cm. Gọi C là một điểm trên (α) và D là một điểm trên (β) sao cho AC và BD cùng vuông góc với giao tuyến Δ và AC = 6cm, BD = 24cm. Tính độ dài đoạn CD.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Bài 2. Cho hai mặt phẳng ((alpha)) và ((eta)) vuông góc với nhau. Người ta lấy trên giao tuyến (Delta) của hai mặt phẳng đó hai điểm (A) và (B) sao cho (AB=8cm). Gọi (C) là một điểm trên ((alpha)) và (D) là một điểm trên ((eta)) sao cho (AC) và (BD) cùng vuông góc với giao tuyến (Delta) và (AC=6cm), (BD=24cm). Tính độ dài đoạn (CD).
Giải
(left. matrix{
(alpha ) ot (eta ) hfill cr
AC ot Delta hfill cr
AC subset (alpha ) hfill cr} ight} Rightarrow AC ot (eta ))
Do đó (ACot AD) hay tam giác (ACD) vuông tại (A)
Áp dụng định lí Pytago vào tam giác (ACD) ta được:
Theo giả thiết (BD) vuông góc với giao tuyến nên (BDot AB) hay tam giác (ABD) vuông tại (B).
Áp dụng định lí Pytago vào tam giác (ABD) ta được:
Từ (1) và (2) suy ra: (D{C^2} = A{C^2} + A{B^2} + B{D^2} = {6^2} + {8^2} + {24^2} = 676)
( Rightarrow DC = sqrt {676} = 26cm)
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |