Bài tập  /  Bài đang cần trả lời

Cho tam giác ABC cân tại A. Trên tia đối tia BA lấy D, trên tia đối tia CA lấy E sao cho BD = CE. I là giao điểm của BE và CD. M là trung điểm của BC

Cho tam giác ABC cân tại A. Trên tia đối tia BA lấy D, trên tia đối tia CA lấy E sao cho BD=CE. I là giao điểm của BE và CD.M là trung điểm của BC.Chứng minh:
a,IB=IC, ID=IE.
b,DE//BC
c,A,M,I thẳng hàng
 

1 Xem trả lời
Hỏi chi tiết
332
1
0
Phùng Minh Phương
20/02/2021 22:01:27
+5đ tặng

a, Xét tam giác BEC và tam giác CDB có :
CE=BD(gt)

ˆBCE=ˆCBD(kề bù vớihaigócbằngnhauˆABC=ˆACB)

BClàcạnhchung

⇒ΔBCE=ΔCBD(c−g−c)

 

⇒ˆBDE=ˆCED(haigóctươngứng)

⇒{ΔBICcântạiI
    ΔDIEcântạiI
⇒{IB=IC
⇒{ΔBICcântạiI   
     ΔDIEcântạiI
⇒{IB=IC, ID=IE

b, Xét 2 tam giác cân BIC và DIE có :

ˆCBI+ˆBCI+ˆBIC=180      ˆDEI+ˆIDE+ˆDIE=180
 

Ta có : ˆBIC=ˆDIE ( hai góc đối đỉnh )

⇒ˆCBI+ˆBCI=ˆDEI+ˆIDE

  ⇒CBI^+BCI^=DEI^+IDE^


Mà : ˆCBI=ˆBCI;ˆDEI=ˆIDE

⇒ˆCBI=ˆBCI=ˆDEI=ˆIDE
 

⇒BC//DE( vì góc BCD và góc CDE nằm ở vị trí so le trong )


c, Xét tam giác ABM và tam giác ACM có :

AB=AC(gt)

AMlàcạnhchung

BM=MC(gt)

⇒ΔABM=ΔACM(c−c−c)

⇒ˆBAM=ˆCAM(haigóctươngứng)


⇒ AM là tia phân giác của góc BAC (1)

Xét tam giác ABI và tam giác ACI có :

AB=AC(gt)

AI làcạnhchung

BI=MI(cmt)

⇒ΔABI=ΔACI(c−c−c)

⇒ˆBAI=ˆCAI(haigóctươngứng)

⇒AI là tia phân giác của góc BAC (2)

Từ (1) và (2) ta có :

AI trùng với AM ( vì cùng là tia phân giác góc BAC)

⇒⇒ A, M, I thẳng hàng.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×