Cm: a) Xét t/giác ABH và t/giác ACH
có AB = AC (gt)
góc AHB = góc AHC = 900 (gt)
AH : chung
=> t/giác ABH = t/giác ACH (ch - cgn)
=> góc BAH = góc HAC (hai góc tương ứng) (Đpcm)
=> BH = CH (hai cạnh tương ứng)
=> H là trung điểm của BC
b) Xét t/giác AMH và t/giác ANH
có góc AMH = góc ANH = 900 (gt)
AH : chung
góc MAH = góc NAH (Cmt)
=> t/giác AMH = t/giác ANH (ch - gn)
=> AM = AN (hai cạnh tương ứng)
=> T/giác AMN là t/giác cân tại A
c) Gọi I là giao điểm của BC và MP
Ta có: T/giác AMH = t/giác ANH (Cmt)
=> MH = HN (hai cạnh tương ứng)
Mà HN = PH (gt)
=> MH = PH
Ta lại có: góc AHM + góc MHB = 900 (phụ nhau)
góc AHN + góc NHC = 900 (phụ nhau)
Và góc AHM = góc AHN (vì t/giác AHM = t/giác AHN)
=> góc MHB = góc NHC
Mà góc NHC = góc BHP
=> góc MHB = góc BHP
Xét t/giác MHI và t/giác PHI
có MH = PH (cmt)
góc MHI = góc IHP (cmt)
HI : chung
=> t/giác MHI = t/giác PHI (c.g.c)
=> MI = PI (hai cạnh tương ứng) => I là trung điểm của MP (1)
=> góc MIH = góc HIP (hai góc tương ứng)
Mà góc MIH + góc HIP = 1800
=> 2.góc MIH = 1800
=> góc MIH = 1800 : 2
=> góc MIH = 900
=> HI ⊥⊥MP (2)
Từ (1) và (2) suy ra HI là đường trung trực của đoạn thẳng MP
hay BC là đường trung trực của đoạc thẳng MP (Đpcm)