Bài tập  /  Bài đang cần trả lời

Cho ∆ ABC có A = 90°. Đường trung trực của AB cắt AB tại E và BC tại F. Chứng minh FA = FB

Bài 12 : Cho ∆ ABC có

= 90° . Đường trung trực của AB cắt AB tại E và BC tại F

a/ Chứng minh FA = FB

b/ Từ F vẽ FH ⊥ AC (H ∈ AC).Chứng minh FH ⊥ EF

c/ Chứng minh FH = AE

d/ Chứng minh EH = BC/2; EH // BC
giúp mik zới thằng em mik đang cần gấp

2 Xem trả lời
Hỏi chi tiết
519
3
0
Toxic
17/07/2021 15:28:22
+5đ tặng

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập
3
1
Nguyễn Anh Minh
17/07/2021 15:29:47
+4đ tặng

a) Xét tam giác AEF và tam giác BEF, có:

AE = BE (Tính chất đường trung trực)

góc AEF = góc BEF = 90o (Tính chất đường trung trực)

EF : cạnh chung

Vậy tam giác AEF = tam giác BEF (c. g. c)

=> AF = BF (2 cạnh tương ứng)

b) Ta có: EF _|_ AE (gt)

AH _|_ AE (gt)

=> EF // AH (Quan hệ từ _|_ -> //) (1)

Lại có: góc AEF = 90o

Mà góc AEF = góc HFE ( Vì 2 góc này ở vị trí trong cùng phía)

Nên: góc HFE = 90o

Hay: FH _|_ EF (đpcm)

c) Ta có: AE _|_ AH (gt)

FH _|_ AH (gt)

=> AE // FH (Quan hệ từ _|_ -> //) (2)

Từ (1), (2) => FH = AE (Quan hệ hai đầu chắn)

d) Ta có: FH = AE (chứng minh câu c)

Mà: BE = AE ( Tính chất đường trung trực)

Nên: FH = BE

Xét tam giác BEF và tam giác HFE, có:

BE = FH (cmt)

góc BEF = góc HFE = 90o

EF: cạnh chung

=> Tam giác BEF = tam giác HFE (c. g. c)

Do đó: BF = HE (2 cạnh tương ứng) (3)

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×