Bài tập  /  Bài đang cần trả lời

Cho tam giác ABC vuông cân tại A, M là trung điểm của BC. Lấy D bất kì thuộc cạnh BC. H và I thứ tự là hình chiếu của B và C xuống đường thẳng AD

----- Nội dung dịch tự động từ ảnh -----
Bài 5. Cho tam giác ABC vuông cân tại A, M là trung điểm của BC. Lấy D bất kì
thuộc cạnh BC. H và I thứ tự là hình chiếu của B và C xuống đường thẳng AD.
Đường thẳng AM cắt CI tại N. Chứng minh rằng:
a) BH = AI
b) DN I AC
c) IM là phân giác của góc HIC
2 trả lời
Hỏi chi tiết
7.423
0
5
Nguyễn Hà Thương
18/10/2021 16:55:10
+5đ tặng

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập
11
3
Bngann
18/10/2021 16:56:29
+4đ tặng

a. Xét tg ABH và tg CAI

Ta có: góc BAH = góc ACI=90 độ - góc IAC

                     AB = AC

           góc AHB = góc CIA=90 độ

Nên tg ABH = tg CAI (cạnh huyền-cạnh góc vuông)

=> BH = AI (ĐPCM)

b. Ta có: CI vuông góc với AD =>CI là đường cao của tg ACD

             AM vuông góc với DC =>AM là đường cao của tg ACD

Mà 2 đường cao CI và AM cắt nhau tại N

=>DN là đường cao thứ 3 của tg ACD

Vậy DN vuông góc với AC (ĐPCM)

c. AM vuông góc với BM

AI vuông góc với BH

=>góc MBH=góc MAI

Xét tg BHM và tg AIM

Ta có:       BH=AI (chứng minh câu a)

      Góc MBH=góc MAI(cmt)

                 BM=AM

Nên tg BHM=tg AIM(g.c.g)

=>HM=IM(1)

Góc BMH=góc AMI(2)

Từ (1) và (2) ta có:

        Tg IMH vuông cân tại M

Vậy IM là tia phân giác của góc HIC (ĐPCM)

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Trắc nghiệm Toán học Lớp 7 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư