Bài tập  /  Bài đang cần trả lời

Bài 3 trang 99 SGK đại số 10

1 Xem trả lời
Hỏi chi tiết
868
0
0
Trần Bảo Ngọc
12/12/2017 01:37:40
Bài 3. Có ba nhóm máy \(A, B, C\) dùng để sản xuất ra hai loại sản phẩm I và II. Để sản xuất một đơn vị sản phẩm mỗi loại phải lần lượt dùng các máy thuộc các nhóm khác nhau. Số máy trong một nhóm và số máy của từng nhóm cần thiết để sản xuất ra một đơn vị sản phẩm thuộc mỗi loại được cho trong bảng sau:

Một đơn vị sản phẩm I lãi \(3\) nghìn đồng, một sản phẩm II lãi \(5\) nghìn đồng. Hãy lập phương án để việc sản xuất hai loại sản phẩm trên có lãi cao nhất.
Giải
Gọi \(x\) là số đơn vị sản phẩm loại I, \(y\) là số đơn vị sản phẩm loại II được nhà máy lập kế hoạch sản xuất. Khi đó số lãi nhà máy nhân được là \(P = 3x + 5y\) (nghìn đồng).
Các đại lượng \(x, y\) phải thỏa mãn các điều kiện sau:
(I) \(\left\{\begin{matrix} x\geq 0,y\geq 0\\ 2x-2y\leq 10 \\ 2y\leq 4 \\2x+4y\leq 12 \end{matrix}\right.\)
(II) \(\left\{\begin{matrix} x\geq 0,y\geq 0\\ y\leq 5-x \\ y\leq 2 \\y\leq-\frac{1}{2}x+3 \end{matrix}\right.\)

Miền nghiệm của hệ bất phương trình (II) là đa giác \(OABCD\) (kể cả biên).
Biểu thức \(F = 3x + 5y\) đạt giá trị lớn nhất khi \((x; y)\) là tọa độ đỉnh \(C\).
(Từ \(3x + 5y = 0 \Rightarrow y = -\frac{3}{5}x.\) Các đường thẳng qua các đỉnh của \(OABCD\) và song song với đường \(y = -\frac{3}{5}x\) cắt \(Oy\) tại điểm có tung độ lớn nhất là đường thẳng qua đỉnh \(C\)).
Phương trình hoành độ điểm \(C\): \(5 - x = -\frac{1}{2}x +3 \Leftrightarrow  x = 4\).
Suy ra tung độ điểm \(C\) là \(y_C= 5 - 4 = 1\). Tọa độ \(C(4; 1)\). Vậy trong các điều kiện cho phép của nhà máy, nếu sản xuất 4 đơn vị sản phẩm loại I và 1 đơn vị sản phẩm đơn vị loại II thì tổng số tiền lãi lớn nhất bằng:
                           \( F_C= 3.4 + 5.1 = 17\) nghìn đồng.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×