Bài tập  /  Bài đang cần trả lời

Bài 33 trang 70 sgk toán lớp 7- tập 2

1 Xem trả lời
Hỏi chi tiết
998
4
0
Trần Đan Phương
12/12/2017 01:58:27
33.  Cho hai đường thẳng xx’, yy’cắt nhau tại O
a) Chứng minh rằng hai tia phân giác Ot, Ot’ của một cặp góc kề bù tạo thành một góc vuông.
b) Chứng minh rằng : Nếu M thuộc đường thẳng  Ot hoặc thuộc đường thẳng Ot’ thì M cách đều hai đường thẳng xx’, yy’
c) Chứng minh rằng : Nếu M cách đều hai đường thẳng xx’, yy’ thì M thuộc đường thẳng Ot hoặc thuộc đường thẳng Ot’
d) Khi M ≡ O thì khoảng cách từ M đến xx’ và yy’ bằng bao nhiêu ?
e) Em có nhận xét gì về tập hợp các điểm cách đều hai đường thẳng cắt nhau xx’ và yy’

Hướng dẫn:
a) Vì Ot là phân giác của \(\widehat{xOy}\)
nên \(\widehat{yOt}\) = \(\widehat{xOt}\) = \(\frac{1}{2}\)\(\widehat{xOy}\)
Ot' là phân giác của \(\widehat{xOy'}\)
nên \(\widehat{xOt'}\) = \(\widehat{y'Ot'}\) = \(\frac{1}{2}\)\(\widehat{xOy'}\)
=> \(\widehat{xOt}\) + \(\widehat{xOt'}\) = \(\frac{1}{2}\)\(\widehat{xOy}\) + \(\frac{1}{2}\)\(\widehat{xOy'}\) = \(\frac{1}{2}\)(\(\widehat{xOy}\) + \(\widehat{xOy'}\))
mà (\(\widehat{xOy}\) + \(\widehat{xOy'}\)) =  180(2 góc kề bù)
=>  \(\widehat{xOt}\) + \(\widehat{xOt'}\) = \(\frac{1}{2}\)1800   900
Vậy hai tia phân giác của hai góc kề bù tạo thành một góc vuông

b) Nếu M thuộc Ot hoặc Ot' thì M cách đều hai đường thẳng xx' và yy'
Thật vậy: M ε Ot do Ot là phân giác của \(\widehat{xOy}\) nên M cách đều Ox, Oy
=> M cách đều xx',yy'
M ε Ot'do Ot' là phân giác của \(\widehat{xOy'}\) nên M cách đều xx', yy'
=> M cách đều xx',yy'
c) M cách đều hai đường thẳng xx', yy'
Nếu M nằm trong một góc trong bốn góc \(\widehat{xOy}\), \(\widehat{xOy'}\), \(\widehat{x'Oy'}\),  \(\widehat{x'Oy}\)  thì M phải thuộc phân giác của góc ây tức M phải thuộc Ot hoặc Ot'
d) Khi M ≡ O thì khoảng cách từ M đến xx', yy' bằng 0
e) Từ các câu trên ta có nhận xét: Tập hợp tất cả các điểm cách đều hai đường thẳng cắt nhau xx', yy' thuộc hai đường thẳng vuông góc nhau lần lượt là phân giác của các góc tạo bởi hai đường thẳng cắt nhau đó.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×