Bài tập  /  Bài đang cần trả lời

Bài 4 trang 11 sgk Toán 9 tập 2

1 Xem trả lời
Hỏi chi tiết
354
0
0
Phạm Văn Phú
12/12/2017 01:34:27
4. Không cần vẽ hình, hãy cho biết số nghiệm của mỗi hệ phương trình sau đây và giải thích vì sao:
a) \(\left\{\begin{matrix} y = 3 - 2x & & \\ y = 3x - 1 & & \end{matrix}\right.\);                      
b) \(\left\{\begin{matrix} y = -\frac{1}{2}x+ 3 & & \\ y = -\frac{1}{2}x + 1 & & \end{matrix}\right.\);
c) \(\left\{\begin{matrix} 2y = -3x & & \\ 3y = 2x & & \end{matrix}\right.\);                           
d) \(\left\{\begin{matrix} 3x - y = 3 & & \\ x - \frac{1}{3}y = 1 & & \end{matrix}\right.\)
Bài giải:
a) \(\left\{\begin{matrix} y = 3 - 2x & & \\ y = 3x - 1 & & \end{matrix}\right.\) ⇔ \(\left\{\begin{matrix} y = -2x + 3 & & \\ y = 3x - 1 & & \end{matrix}\right.\)
Ta có \(a = -2, a' = 3\) nên \(a ≠ a'\) \(\Rightarrow\)  Hai đường thẳng cắt nhau.
Vậy hệ phương trình có một nghiệm (vì hai đường thẳng có phương trình đã cho trong hệ là hai đường thẳng có hệ số góc khác nhau nên chúng cắt nhau tại một điểm duy nhất).
b) \(\left\{\begin{matrix} y = -\frac{1}{2}x+ 3 & & \\ y = -\frac{1}{2}x + 1 & & \end{matrix}\right.\)
Ta có \(a = -\frac{1}{2}, a' = -\frac{1}{2}\), \(b = 3, b' = 1\) nên \(a = a', b ≠ b'\).
 \( \Rightarrow \) Hai đường thẳng song song.
Vậy hệ phương trình vô nghiệm (vì hai đường thẳng có phương trình đã cho trong hệ là hai đường khác nhau và có cùng hệ số góc nên chúng song song với nhau).
c) \(\left\{\begin{matrix} 2y = -3x & & \\ 3y = 2x & & \end{matrix}\right.\)⇔ \(\left\{\begin{matrix} y = -\frac{3}{2}x & & \\ y = \frac{2}{3}x & & \end{matrix}\right.\)
Ta có \(a = -\frac{3}{2}, a' = \frac{2}{3}\) nên \(a ≠ a'\) \( \Rightarrow \) Hai đường thẳng cắt nhau.
Vậy hệ phương trình có một nghiêm.
d) \(\left\{\begin{matrix} 3x - y = 3 & & \\ x - \frac{1}{3}y = 1 & & \end{matrix}\right.\) ⇔\(\left\{\begin{matrix} y = 3x - 3 & & \\ \frac{1}{3}y = x - 1 & & \end{matrix}\right.\) ⇔ \(\left\{\begin{matrix} y = 3x - 3 & & \\ y = 3x - 3 & & \end{matrix}\right.\)
Ta có \(a = 3, a' = 3\); \(b = -3, b' = -3\) nên \(a = a', b = b'\).
 \(\Rightarrow\) Hai đường thẳng trùng nhau.
Vậy hệ phương trình có vô số nghiệm (vì hai đường thẳng có phương trình đã cho trong hệ trùng nhau).

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×