Giải các hệ phương trình sau:
a)
\(\left\{ \matrix{
x\sqrt 5 - \left( {1 + \sqrt 3 } \right)y = 1 \hfill \cr
\left( {1 - \sqrt 3 } \right)x + y\sqrt 5 = 1 \hfill \cr} \right.\)
b)
\(\left\{ \matrix{
{{2{\rm{x}}} \over {x + 1}} + {y \over {y + 1}} = \sqrt 2 \hfill \cr
{x \over {x + 1}} + {{3y} \over {y + 1}} = - 1 \hfill \cr} \right.\)
Giải:
a)
\(\left\{ \matrix{
x\sqrt 5 - \left( {1 + \sqrt 3 } \right)y = 1(1) \hfill \cr
\left( {1 - \sqrt 3 } \right)x + y\sqrt 5 = 1(2) \hfill \cr} \right.\)
Ta giải hệ phương trình bằng phương pháp thế:
Từ (1) ta có \(x = {{\left( {1 + \sqrt 3 } \right)y + 1} \over {\sqrt 5 }}(3)\)
Thế (3) vào (2), ta được:
\(\eqalign{
& \left( {1 - \sqrt 3 } \right)\left[ {{{\left( {1 + \sqrt 3 } \right)y + 1} \over {\sqrt 5 }}} \right] + y\sqrt 5 = 1 \cr
& \Leftrightarrow \left( {1 - \sqrt 3 } \right)\left( {1 + \sqrt 3 } \right)y + \left( {1 - \sqrt 3 } \right) + 5y = \sqrt 5 \cr
& \Leftrightarrow - 2y + 5y = \sqrt 5 + \sqrt 3 - 1 \Leftrightarrow y = {{\sqrt 5 + \sqrt 3 - 1} \over 3} \cr} \)
Thế y vừa tìm được vào (3), ta được:
\(x = {{\left( {1 + \sqrt 3 } \right)\left( {{{\sqrt 5 + \sqrt 3 - 1} \over 3}} \right) + 1} \over {\sqrt 5 }}\) hay \(x = {{\sqrt 5 + \sqrt 3 + 1} \over 3}\)
Vậy hệ phương trình có nghiệm là: \(\left( {{{\sqrt 5 + \sqrt 3 + 1} \over 3};{{\sqrt 5 + \sqrt 3 - 1} \over 3}} \right)\)
b)Giải hệ phương trình: (I)
\(\left\{ \matrix{
{{2{\rm{x}}} \over {x + 1}} + {y \over {y + 1}} = \sqrt 2 \hfill \cr
{x \over {x + 1}} + {{3y} \over {y + 1}} = - 1 \hfill \cr} \right.\)
Ta giải hệ phương trình bằng phương pháp đặt ẩn phụ.
Đặt \(u = {x \over {x + 1}};v = {y \over {y + 1}}\)
Thay vào hệ (I), ta có hệ mới với ẩn là \(u\) và \(v\) ta được:
\(\left\{ \matrix{
2u + v = \sqrt 2 (1') \hfill \cr
u + 3v = - 1(2') \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
2u + v = \sqrt 2 (3) \hfill \cr
- 2u - 6v = 2(4) \hfill \cr} \right.\)
Cộng (3) và (4) vế theo vế, ta được: \( - 5{\rm{v}} = 2 + \sqrt 2 \Leftrightarrow v = {{ - \left( {2 + \sqrt 2 } \right)} \over 5}\)
Thay \(v = {{ - \left( {2 + \sqrt 2 } \right)} \over 5}\) vào (1’), ta được:
\(2u = = = {{ - 2 - \sqrt 2 } \over 5} \hfill \cr} \right.đk\left\{ \matrix{
x \ne - 1 \hfill \cr
y \ne - 1 \hfill \cr} \right.\)
\(\Leftrightarrow \left\{ \matrix{
x = \left( {x + 1} \right)\left( { \right) \hfill \cr
y = \left( {y + 1} \right){{\left( { - 2 - \sqrt 2 } \right)} \over 5} \hfill \cr} \right.\)
\(\left\{ \matrix{
5{\rm{x}} = \left( {x + 1} \right)\left( {1 + 3\sqrt 2 } \right) \hfill \cr
5y = \left( {y + 1} \right)\left( { - 2 - \sqrt 2 } \right) \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
x = \hfill \cr
y = {{-2 - \sqrt 2 } \over {7 + \sqrt 2 }} \hfill \cr} \right.\)
Vậy nghiệm của hệ phương trình là: \(\left( {;{{-2 - \sqrt 2 } \over {7 + \sqrt 2 }}} \right)\) thỏa mãn điều kiện