Bài 5. Cho ba hàm số:
\(y = {1 \over 2}{x^2};y = {x^2};y = 2{x^2}\)
a) Vẽ đồ thị của ba hàm số này trên cùng một mặt phẳng tọa độ.
b) Tìm ba điểm \(A, B, C\) có cùng hoành độ \(x = -1,5\) theo thứ tự nằm trên ba đồ thị. Xác định tung độ tương ứng của chúng.
c) Tìm ba điểm \(A', B', C'\) có cùng hoành độ \(x = 1,5\) theo thứ tự nằm trên ba đồ thị. Kiểm tra tính đối xứng của A và A', B và B', C và C'.
d) Với mỗi hàm số trên, hãy tìm giá trị của x để hàm số đó có giá trị nhỏ nhất.
Bài giải:a) Vẽ đồ thị
b) Gọi \({y_A},{y_B},{y_C}\) lần lượt là tung độ các điểm \(A, B, C\) có cùng hoành độ \(x = -1,5\). Ta có:
\(\eqalign{
& {y_A} = {1 \over 2}{( - 1,5)^2} = {1 \over 2}.2,25 = 1,125 \cr
& {y_B} = {( - 1,5)^2} = 2,25 \cr
& {y_C} = 2{( - 1.5)^2} = 2.2,25 = 4,5 \cr} \)
c) Gọi \({y_{A'}},{y_{B'}},{y_{C'}}\) lần lượt là tung độ các điểm \(A', B', C'\) có cùng hoành độ \(x = 1,5\). Ta có:
\(\eqalign{
& {y_{A'}} = {1 \over 2}{(1,5)^2} = {1 \over 2}.2,25 = 1,125 \cr
& {y_{B'}} = {(1,5)^2} = 2,25 \cr
& {y_{C'}} = 2{(1.5)^2} = 2.2,25 = 4,5 \cr} \)
Kiểm tra tính đối xứng: A và A', B và B', C và C' đối xứng với nhau qua trục tung Oy.
d) Với mỗi hàm số đã cho ta đều có hệ số \(a > 0\) nên O là điểm thấp nhất của đồ thị.
Vậy \(x = 0\) thì hàm số có giả trị nhỏ nhất.