Bài tập  /  Bài đang cần trả lời

Bài tập trắc nghiệm Giải tích 12: Cực trị của hàm số (Phần 5) - Bài tập trắc nghiệm Giải tích 12: Cực trị của hàm số (phần 5)

1 trả lời
Hỏi chi tiết
318
0
0
Đặng Bảo Trâm
07/04/2018 13:23:31

Bài tập trắc nghiệm Giải tích 12: Cực trị của hàm số (Phần 5)

Câu 13: Với giá trị nào của m, đồ thị hàm số y = x3 - 3mx2 + m có hai điểm cực trị B, C thẳng hàng với điểm A(-1;3)?

A. m = 0     B. m = 1     C. m = -3/2     D. m = -3/2 hoặc m = 1

Câu 14: Cho hàm số y = x3 - 3x2 - 6x + 8 (C). Phương trình đường thẳng đi qua hai điểm cực trị của đồ thị hàm số (C) là:

A. y = 6x - 6     B. y = -6x - 6     C. y = 6x + 6     D. y = -6x + 6

Câu 15: Cho hàm số y = x3 -3x2 - 9x + 4. Phương trình đường thẳng đi qua hai điểm cực trị của đồ thị hàm số trên là:

A. y = -8x - 17     B. y = x + 7     C. y = -x + 1     D. Không tồn tại

Câu 16: Với giá trị nào của m, đường thẳng đi qua hai điểm cực trị của đồ thị hàm số y = x3 - 3x2 + 3mx + 1 - m tạo với đường thẳng Δ: 3x + y - 8 = 0 một góc 45o ?

A. m = 0    B. m = 2    C.m = 3/4    D. m = 2 hoặc m = 3/4

Câu 17: Với giá trị nào của m, đồ thị hàm số y = x3 + 3x2 + m2x + m có hai điểm cực trị đối xứng qua đường thẳng:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

A. m = 0    B. m = 1     C. m = -1    D. Không tồn tại

Câu 18: Với giá trị nào của m, đồ thị hàm số y = x4 - 2mx2 + m 4 + 2m có ba điểm cực trị tạo thành tam giác đều?

A. m = 0     B. m = ∛3    C.-∛3     D. Không tồn tại

Hướng dẫn giải và Đáp án

13-D14-D15-A16-C17-D18-B

Câu 13:

y’=3x2-6mx=3x(x - 2m)

Hàm số có hai điểm cực trị => y’=0 có hai nghiệm phân biệt <=> m ≠ 0 (*)

Tọa độ hai điểm cực trị là B(0;m) và C(2m;-4m3 + m)

AB =(1;m – 3); AC =(2m+1; -4m3 + m-3)

A, B, C thẳng hàng

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Đối chiếu với điều kiện (*) có m ∈ {-3/2; 1}

Câu 14:

Cách 1: Ta có y’=3x2-6x-6 ; y”=6x - 6

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Do đó đồ thị hàm số có điểm cực trị là A(1 + √3; -6√3) và B(1 - √3; 6√3) .

Phương trình đường thẳng đi qua hai điểm cực trị là:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Cách 2: Ta có:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Gọi x1, x2 là nghiệm của phương trình y’(x)= 3x2-6x-6=0 . Khi đó ta có A(x1, y(x1)), BA(x2, y(x2)) là hai cực trị của đồ thị hàm số C với y'(x1) = y'(x2) = 0 .

Do đó ta có:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Vậy A, B thuộc đường thẳng y= - 6x+6.

Câu 15:

y' = 3x2 - 6x - 9, y'' = 6x - 6

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Do đồ thị hàm số có hai điểm cực trị là A(-1;0) và B(3;-23).

Phương trình đường thẳng đi qua hai điểm cực trị là:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Câu 16:

Ta có y' = 3x2 - 6x + 3m. Hàm số có hai điểm cực trị <=> y’=0 có hai nghiệm phân biệt

<=> Δ' = 32 -3.3m > 0 <=> m < 1 (*)

Chia y cho y’ ta được:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Giả sử x1, x2 là hai nghiệm phân biệt của y’=0

Phương trình đường thẳng đi qua hai điểm cực trị có dạng (d) : y= (2m-2)x+1

(d) có vectơ pháp tuyến là n1 = (2m - 2; -1)

(Δ) : 3x+y-8=0 có vectơ pháp tuyến là n2(3; 1)

Vì góc giữa đường thẳng (d) và (Δ) là 45o nên

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12 Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Đối chiếu điều kiện (*) có m = 3/4

Câu 17:

y' = 3x2 + 6x + m2 . Hàm số có hai điểm cực trị => y’=0 có hai nghiệm phân biệt <=> Δ' = 32 - 3.m2 > 0 <=> -√3 < m < √3

Chia y cho y’ ta được:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Giả sử x1, x2 là hai nghiệm phân biệt của y’=0.

Phương trình đường thẳng đi qua hai điểm cực trị có dạng

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

(d) có vectơ pháp tuyến là

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12 Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Vì hai điểm cực trị đối xứng với nhau qua (Δ) nên (d) ⊥ (Δ)

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Thử lại khi m=0 ta có: y = x3 + 3x2; y' = 3x2 + 6x; y'' = 6x + 6

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

y''(0) = 6 > 0; y''(-2) = -6 < 0

Tọa độ hai điểm cực trị của đồ thị hàm số là O(0;0), A(-2;4)

Trung điểm của OA là I(-1;2).

Ta thấy I(-1,2) không thuộc đường thẳng (Δ) . Vậy không tồn tại m.

Câu 18:

y' = 4x3 - 4mx = 4x(x2 - m)

Hàm số có ba điểm cực trị => y’=0 có ba nghiệm phân biệt <=> m > 0.

Khi đó đồ thị hàm số có ba điểm cực trị là :

A(0; m4 + 2m), B(-√m; m4 - m2 + 2m), C(√m; m4 - m2 + 2m)

ΔABC đều khi AB=AC

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Đối chiếu với điều kiện tồn tại cực trị ta có m = ∛3 là giá trị cần tìm.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập liên quan
Bài tập Toán học Lớp 12 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư