Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Bài tập trắc nghiệm Giải tích 12: Sự đồng biến, nghịch biến của hàm số (Phần 4)
Câu 7: Hàm số:
đồng biến trên khoảng nào?
A. R B. (-∞; 0) C. (-1; 0) D. (0; +∞)
Câu 8: Cho hàm số y = x3 - x2 + (m-1)x + m. Tìm điều kiện của tham số m để hàm số đồng biến trên R
A. m ≤ 2 B. m > 2 C. m ≥ 2 D. m <2
Câu 9: Cho hàm số
Tìm giá trị lớn nhất của tham số m để hàm số nghịch biến trên khoảng (-∞; -1).
A. m < 2√2 B. m ≥ -2√2 C. m = 2√2 D. -2√2 ≤ m 2√2
Câu 10: Tìm tất cả các giá trị của tham số m sao cho hàm số
A. 1 < m < 5 B. m ≥ 5 C. m < -1 hoặc m > 5 D. m > 5
Câu 11: 11. Cho hàm số y = x3 + 3x2 + mx + 1 - 2m. Tìm các giá trị của m để hàm số đồng biến trên đoạn có độ dài bằng 1.
A. m =0 B. m = 1/4 C. 9/4 D. Không tồn tại
Hướng dẫn giải và Đáp án
7-A | 8-C | 9-C | 10-D | 11-D |
Câu 7:
Hàm số đồng biến trên R
Câu 8:
y' = x2 - 2x + (m -1). Hàm số đồng biến trên R
<=> y' > 0 ∀x ∈ R <=> Δ' ≥ 0; Δ' = -m + 2 ≥ 0 <=> m > 2
Câu 9:
Ta có y' = -x2 - mx - 2 . Hàm số nghịch biến trên khoảng (-∞; - 1) nếu y' = x2 - mx - 2 ≤ 0 trên khoảng (-∞; -1)
Cách 1. Dùng định lí dấu của tam thức bậc hai. Ta có Δ = m2 - 8
TH1: -2√2 ≤ m ≤ 2√2 => Δ ≤ 0. Hàm số nghịch biến trên R
TH2:
y' = 0. có hai nghiệm phân biệt là
Từ TH1 và TH2, ta có m ≤ 2√2
Cách 2. Dùng phương pháp biến thiên hàm số
Ta có
Từ đó suy ra
Do đó m ≤ 2√2
Vậy giá trị lớn nhất của tham số m để hàm số nghịch biến trên khoảng (-∞; -1) là m = 2√2
Câu 10:
Ta có
Câu 11:
y' = 3x2 + 6x + m. Hàm số đồng biến nếu y' ≥ 0. Ta có Δ' = 9 - 3m
TH1: m ≥ 3 => Δ' ≤ 0 .
Hàm số đồng biến trên R. Do đó m ≥ 3 không thỏa mãn yêu cầu đề bài
TH2: m < 3 => Δ' > 0 .
y’ có hai nghiệm phân biệt là
Từ bảng biến thiên, ta thấy không tồn tại m để hàm số đồng biến trên đoạn có độ dài bằng 1.
Từ TH1 và TH2, không tồn tại m thỏa mãn.
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |