Bài tập  /  Bài đang cần trả lời

Câu 3 trang 99 SGK Hình học 10

1 trả lời
Hỏi chi tiết
337
0
0
Trần Bảo Ngọc
12/12/2017 00:56:21
Bài 3. Cho tam giác đều \(ABC\) cạnh \(a\)
a) Cho \(M\) là một điểm trên đường tròn ngoại tiếp tam giác \(ABC\). Tính \(MA^2+ MB^2+ MC^2\) theo \(a\)
b) Cho đường thẳng \(a\) tùy ý, tìm điểm \(N\) trên đường thẳng \(d\) sao cho \(NA^2+ NB^2 + NC^2\) nhỏ nhất
Trả lời:
 
a) Ta có:
\(\eqalign{
& \overrightarrow {MA} = \overrightarrow {OA} - \overrightarrow {OM} \cr
& {\overrightarrow {MA} ^2} = {(\overrightarrow {OA} - \overrightarrow {OM} )^2} = {\overrightarrow {OA} ^2} + {\overrightarrow {OM} ^2} - 2\overrightarrow {OA} .\overrightarrow {OM} \cr
& \Rightarrow {\overrightarrow {MA} ^2} = 2{R^2} - 2\overrightarrow {OA} .\overrightarrow {OM} (1) \cr} \)
Tương tự ta có:
\(\eqalign{
& M{B^2} = {\overrightarrow {MB} ^2} = 2{R^2} - 2\overrightarrow {OB} .\overrightarrow {OM} (2) \cr
& M{C^2} = {\overrightarrow {MC} ^2} = 2{R^2} - 2\overrightarrow {OC.} \overrightarrow {OM} (3) \cr} \)
Từ (1), (2) và (3) suy ra:
 \(M{A^2} + M{B^2} + M{C^2} = 6{R^2} - 2\overrightarrow {OM} (\overrightarrow {OA}  + \overrightarrow {OB}  + \overrightarrow {OC} )\)
Tam giác \(ABC\) là tam giác đều nội tiếp đường tròn tâm \(O\) nên \(O\) cũng là trọng tâm của tam giác \(ABC\), cho ta \(\overrightarrow {OA}  + \overrightarrow {OB}  + \overrightarrow {OC} = \overrightarrow  0\)
Vậy \(M{A^2} + M{B^2} + M{C^2} = 6{R^2} \)
Vì đường tròn ngoại tiếp tam giác đều cạnh \(a\) nên ta có:
\(a = R\sqrt3   ⇒ 6R^2= 2(R\sqrt3)^2\)
Vậy  \(M{A^2} + M{B^2} + M{C^2}  = 2a^2\)
b) Gọi \(G\) là trọng tâm của tam giác ta có:
\(\eqalign{
& \overrightarrow {NA} = \overrightarrow {NG} + \overrightarrow {GA} \cr
& \Rightarrow {\overrightarrow {NA} ^2} = {\overrightarrow {GA} ^2} + 2\overrightarrow {NG} .\overrightarrow {GA} + {\overrightarrow {GA} ^2} \cr} \)
Tương tự ta có:
\(\eqalign{
& {\overrightarrow {NB} ^2} = {\overrightarrow {NG} ^2} + 2\overrightarrow {NG} .\overrightarrow {GB} + {\overrightarrow {GB} ^2} \cr
& {\overrightarrow {NC} ^2} = {\overrightarrow {NG} ^2} + 2\overrightarrow {NG} .\overrightarrow {GC} + {\overrightarrow {GC} ^2} \cr
& \Rightarrow N{A^2} + N{B^2} + N{C^2} = 3N{G^2} + 2\overrightarrow {NG} (\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} ) + G{A^2} + G{B^2} + G{C^2} \cr} \) 
Vì \(G\) là trọng tâm của tam giác
⇒ \(\overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GC}  = \overrightarrow 0 \)
\(\eqalign{
& {\overrightarrow {GA} ^2} + {\overrightarrow {GB} ^2} + {\overrightarrow {GC} ^2} = 3G{A^2} = 3.{({2 \over 3}.{{a\sqrt 3 } \over 2})^2} = {a^2} \cr
& \Rightarrow N{A^2} + N{B^2} + N{C^2} = {a^2} + 3N{G^2} \cr} \)
\(a^2\) là số không đổi nên tổng \(N{A^2} + N{B^2} + N{C^2}\) nhỏ nhất khi \(NG\) đạt giá trị nhỏ nhất. Vì \(NG\) là khoảng cách từ \(G\) đến điểm \(N\) thuộc đường thẳng \(d\) nên \(NG\) nhỏ nhất khi \(NG⊥d\) hay \(N\) là hình chiếu của trọng tâm \(G\) trên đường thẳng \(d\).

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Trắc nghiệm Toán học Lớp 10 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư