5c
ta có a,b,c,d > 0
=> (a + b)/(a + b + c + d) < (a + b)/(a + b + c)
(b + c)/(a + b + c + d) < (b + c)/(b + c + d)
(c + d)/(a + b + c + d) < (c + d)/(c + d + a)
(d + a)/(a + b + c + d) < (d + a)/(d + a + b)
do đó (a + b)/(a + b + c + d) + (b + c)/(a + b + c + d) + (c + d)/(a + b + c + d) + (d + a)/(a + b + c + d) < (a + b)/(a + b + c) + (b + c)/(b + c + d) + (c + d)/(c + d + a) + (d + a)/(d + a + b)
<=> 2(a + b + c + d)/(a + b + c + d) < (a + b)/(a + b + c) + (b + c)/(b + c + d) + (c + d)/(c + d + a) + (d + a)/(d + a + b)
<=> 2 < (a + b)/(a + b + c) + (b + c)/(b + c + d) + (c + d)/(c + d + a) + (d + a)/(d + a + b)
ta có a,b,c,d > 0
=> (a + b + d)/(a + b + c + d) > (a + b)/(a + b + c)
(b + c + a)/(a + b + c + d) > (b + c)/(b + c + d)
(c + d + b)/(a + b + c + d) > (c + d)/(c + d + a)
(d + a + c)/(a + b + c + d) > (d + a)/(d + a + b)
do đó (a + b + d)/(a + b + c + d) + (b + c + a)/(a + b + c + d) + (c + d + b)/(a + b + c + d) + (d + a + c)/(a + b + c + d) > (a + b)/(a + b + c) + (b + c)/(b + c + d) + (c + d)/(c + d + a) + (d + a)/(d + a + b)
<=> 3(a + b + c + d)/(a + b + c + d) > (a + b)/(a + b + c) + (b + c)/(b + c + d) + (c + d)/(c + d + a) + (d + a)/(d + a + b)
<=> 3 > (a + b)/(a + b + c) + (b + c)/(b + c + d) + (c + d)/(c + d + a) + (d + a)/(d + a + b)
Vậy 2 < (a + b)/(a + b + c) + (b + c)/(b + c + d) + (c + d)/(c + d + a) + (d + a)/(d + a + b) < 3