Bài tập  /  Bài đang cần trả lời

Cho ngũ giác ABCDE bất kì. Dựng G sao cho vecto GA + vecto GB + vecto GC + vecto GD + vecto GE = vecto 0

2 trả lời
Hỏi chi tiết
2.417
3
4
Ngoc Hai
07/09/2017 18:23:42

GA + GB + GC + GD + GE = 0 
Thực vậy, nếu gọi O là gốc tọa độ, sẽ tồn tại vectơ tổng của các vectơ OA, OB, OC, OD, mà ta đặt tên là vectơ OF. Cũng tồn tại điểm G định bởi OF = 4OG. Do đó ta có 
5OG = OA + OB + OC + OD + OE
5OG = (OG + GA) + (OG + GB) + (OG + GC) + (OG + GD) + (OG + GE)
5OG = 5OG + GA + GB + GC + GD + GE
Khử 4OG ở hai vế. 
Suy ra tồn tại điểm G có tính chất đã cho: 
GA + GB + GC + GD + GE = 0 
Và G như thế dc gọi là trọng tâm của tứ giác 

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập
0
0
Thủy Khả
08/09/2017 15:59:51
mình hỏi cách dựng không phải chứng minh tồn tại trọng tâm

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập liên quan
Trắc nghiệm Toán học Lớp 10 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư